Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Anal Bioanal Chem ; 416(18): 4029-4038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38829382

ABSTRACT

In this study, a molecular beacon (MB) was designed for colorimetric loop-mediated isothermal amplification (cLAMP). The length of complementary bases on the MB, guanine and cytosine content (GC content), and hybridization sites of complementary bases were investigated as key factors affecting the design of the MB. We designed MBs consisting of 10, 15, and 20 complementary bases located at both ends of the HRPzyme. In the case of the long dumbbell DNA structure amplified from the hlyA gene of Listeria monocytogenes, possessing a flat region (F1c-B1) of 61 base pairs (bp), an MB was designed to intercalate into the flat region between the F1c and B1 regions of the LAMP amplicons. In the case of the short dumbbell DNA structure amplified from the bcfD gene of Salmonella species possessing a flat region (F1c-B1) length of 6 bp, another MB was designed to intercalate into the LoopF or LoopB regions of the LAMP amplicons. The results revealed that the hybridization site of the MB on the LAMP amplicons was not crucial in designing the MB, but the GC content was an important factor. The highest hybridization efficiencies for LAMP amplicons were obtained from hlyA gene-specific and bcfD gene-specific MBs containing 20- and 15-base complementary sequences, respectively, which exhibited the highest GC content. Therefore, designing MBs with a high GC content is an effective solution to overcome the low hybridization efficiency of cLAMP assays. The results obtained can be used as primary data for designing MBs to improve cLAMP accessibility.


Subject(s)
Colorimetry , Listeria monocytogenes , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Colorimetry/methods , Listeria monocytogenes/genetics , Listeria monocytogenes/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Salmonella/genetics , Salmonella/isolation & purification , Nucleic Acid Hybridization/methods , Molecular Diagnostic Techniques
2.
Appl Microbiol Biotechnol ; 108(1): 228, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386129

ABSTRACT

Fusarium verticillioides is one of the most important fungal pathogens causing maize ear and stalk rots, thereby undermining global food security. Infected seeds are usually unhealthy for consumption due to contamination with fumonisin B1 (FB1) mycotoxin produced by the fungus as a virulence factor. Unveiling the molecular factors that determine fungal development and pathogenesis will help in the control and management of the diseases. Kex2 is a kexin-like Golgi-resident proprotein convertase that is involved in the activation of some important proproteins. Herein, we identified and functionally characterized FvKex2 in relation to F. verticillioides development and virulence by bioinformatics and functional genomics approaches. We found that FvKex2 is required for the fungal normal vegetative growth, because the growth of the ∆Fvkex2 mutant was significantly reduced on culture media compared to the wild-type and complemented strains. The mutant also produced very few conidia with morphologically abnormal shapes when compared with those from the wild type. However, the kexin-like protein was dispensable for the male role in sexual reproduction in F. verticillioides. In contrast, pathogenicity was nearly abolished on wounded maize stalks and sugarcane leaves in the absence of FvKEX2 gene, suggesting an essential role of Fvkex2 in the virulence of F. verticillioides. Furthermore, high-performance liquid chromatography analysis revealed that the ∆Fvkex2 mutant produced a significantly lower level of FB1 mycotoxin compared to the wild-type and complemented strains, consistent with the loss of virulence observed in the mutant. Taken together, our results indicate that FvKex2 is critical for vegetative growth, FB1 biosynthesis, and virulence, but dispensable for sexual reproduction in F. verticillioides. The study presents the kexin-like protein as a potential drug target for the management of the devastating maize ear and stalk rot diseases. Further studies should aim at uncovering the link between FvKex2 activity and FB1 biosynthesis genes. KEY POINTS: •The kexin-like protein FvKex2 contributes significantly to the vegetative growth of Fusarium verticillioides. •The conserved protein is required for fungal conidiation and conidial morphology, but dispensable for sexual reproduction. •Deletion of FvKEX2 greatly attenuates the virulence and mycotoxin production potential of F. verticillioides.


Subject(s)
Fumonisins , Fusarium , Mycotoxins , Male , Humans , Mycotoxins/genetics , Virulence
3.
Food Sci Anim Resour ; 43(6): 989-1001, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37969326

ABSTRACT

Processed foods containing pork fat tissue to improve flavor and gain economic benefit may cause severe issues for Muslims, Jews, and vegetarians. This study aimed to develop an indirect enzyme-linked immunosorbent assay (iELISA) based on a monoclonal antibody specific to thermal stable-soluble protein in pork fat tissue and apply it to detect pork fat tissue in heat-processed (autoclave, steam, roast, and fry) beef meatballs. To develop a sensitive iELISA, the optimal sample pre-cooking time, coating conditions, primary and secondary dilution time, and various buffer systems were tested. The change in the iELISA sensitivity with different 96-well microtiter microplates was confirmed. The detection limit of iELISA performed with an appropriate microplate was 0.015% (w/w) pork fat in raw and heat-treated beef. No cross-reactions to other meats or fats were shown. These results mean that the iELISA can be used as an analytical method to detect trace amounts of pork fat mixed in beef.

4.
Materials (Basel) ; 16(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37895680

ABSTRACT

The von Neumann architecture has faced challenges requiring high-fulfillment levels due to the performance gap between its processor and memory. Among the numerous resistive-switching random-access memories, the properties of hexagonal boron nitride (BN) have been extensively reported, but those of amorphous BN have been insufficiently explored for memory applications. Herein, we fabricated a Pt/BN/TiN device utilizing the resistive switching mechanism to achieve synaptic characteristics in a neuromorphic system. The switching mechanism is investigated based on the I-V curves. Utilizing these characteristics, we optimize the potentiation and depression to mimic the biological synapse. In artificial neural networks, high-recognition rates are achieved using linear conductance updates in a memristor device. The short-term memory characteristics are investigated in depression by controlling the conductance level and time interval.

5.
Micromachines (Basel) ; 14(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37763916

ABSTRACT

The existing von Neumann architecture for artificial intelligence (AI) computations suffers from excessive power consumption and memory bottlenecks. As an alternative, compute-in-memory (CIM) technology has been emerging. Among various CIM device candidates, split-gate NOR flash offers advantages such as a high density and low on-state current, enabling low-power operation, and benefiting from a high level of technological maturity. To achieve high energy efficiency and high accuracy in CIM inference chips, it is necessary to optimize device design by targeting low power consumption at the device level and surpassing baseline accuracy at the system level. In split-gate NOR flash, significant factors that can cause CIM inference accuracy drop are the device conductance variation, caused by floating gate charge variation, and a low on-off current ratio. Conductance variation generally has a trade-off relationship with the on-current, which greatly affects CIM dynamic power consumption. In this paper, we propose strategies for designing optimal devices by adjusting oxide thickness and other structural parameters. As a result of setting Tox,FG to 13.4 nm, TIPO to 4.6 nm and setting other parameters to optimal points, the design achieves erase on-current below 2 µA, program on-current below 10 pA, and off-current below 1 pA, while maintaining an inference accuracy of over 92%.

6.
ACS Appl Bio Mater ; 6(9): 3726-3738, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37647153

ABSTRACT

In this study, the influence of microenvironments on antibody production of hybridoma cells was analyzed using six types of functionalized parylene films, parylene-N and parylene-C (before and after UV radiation), parylene-AM, and parylene-H, and using polystyrene as a negative control. Hybridoma cells were cultured on modified parylene films that produced a monoclonal antibody against the well-known fungal toxin ochratoxin-A. Surface properties were analyzed for each parylene film, such as roughness, chemical functional groups, and hydrophilicity. The proliferation rate of the hybridoma cells was observed for each parylene film by counting the number of adherent cells, and the total amount of produced antibodies from different parylene films was estimated using indirect ELISA. In comparison with the polystyrene, the antibody-production by parylene-H and parylene-AM was estimated to be observed to be as high as 210-244% after the culture of 24 h. These results indicate that the chemical functional groups of the culture plate could influence antibody production. To analyze the influence of the microenvironments of the modified parylene films, we performed cell cycle analysis to estimate the ratio of the G0/G1, S, and G2/M phases of the hybridoma cells on each parylene film. From the normalized proportion of phases of the cell cycle, the difference in antibody production from different surfaces was considered to result from the difference in the proliferation rate of hybridoma cells, which occurred from the different physical and chemical properties of the parylene films. Finally, protein expression was analyzed using an mRNA array to determine the effect of parylene films on protein expression in hybridoma cells. The expression of three antibody production-related genes (CD40, Sox4, and RelB) was analyzed in hybridoma cells cultured on modified parylene films.


Subject(s)
Antibody Formation , Polystyrenes , Hybridomas , Antibodies, Monoclonal
7.
Nucleic Acids Res ; 51(19): 10238-10260, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37650633

ABSTRACT

Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.


Subject(s)
Fusarium , Histones , Iron , Chromatin , Histones/genetics , Histones/metabolism , Iron/metabolism , Nucleosomes , Siderophores/genetics , Fusarium/metabolism
8.
J Microbiol Biotechnol ; 33(9): 1170-1178, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37386719

ABSTRACT

Food allergy represents a severe problem for many societies, including sensitive populations, academies, health authorities, and the food industry. Peanut allergy occupies a special place in the food allergy spectrum. To prevent consumption by consumers suffering from a peanut allergy, a rapid and sensitive detection method is essential to identify unintended peanut adulteration in processed foods. In this study, we produced four monoclonal antibodies (MAbs; RO 3A1-12, PB 4C12-10, PB 5F9-23, and PB 6G4-30) specific to thermo-stable and soluble proteins (TSSPs) of peanut and developed an enzyme-linked immunosorbent assay (ELISA) based on the MAbs. Among them, PB 5F9-23 MAb was firmly bound to Ara h 1, and other MAbs strongly reacted to Ara h 3 in the Western blot analysis. An antibody cocktail solution of the MAbs was used to enhance the sensitivity of an indirect ELISA, and the limit of detection of the indirect ELISA based on the antibody cocktail solution was 1 ng/ml and improved compared to the indirect ELISA based on the single MAb (11 ng/ml). The cross-reaction analysis revealed the high specificity of developed MAbs to peanut TSSPs without cross-reaction to other food allergens, including nuts. Subsequently, analyzing processed foods by indirect ELISA, all foods labeled as containing peanuts in the product description were confirmed to be positive. The results indicate that the developed antibodies exhibit high specificity and sensitivity to peanuts and can be used as bio-receptors in immunoassays or biosensors to detect intentional or unintentional adulteration of peanuts in processed foods, particularly heat-processed foods.


Subject(s)
Food Hypersensitivity , Peanut Hypersensitivity , Antibodies, Monoclonal , Arachis , Plant Proteins , Peanut Hypersensitivity/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Allergens
9.
Anal Bioanal Chem ; 415(20): 4973-4984, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37365333

ABSTRACT

Contamination by Escherichia coli O157:H7 is considered a threat in the livestock and food industries. Therefore, it is necessary to develop methods for the convenient and rapid detection of Shiga-toxin-producing E. coli O157:H7. This study aimed to develop a colorimetric loop-mediated isothermal amplification (cLAMP) assay using a molecular beacon to rapidly detect E. coli O157:H7. Primers and a molecular beacon were designed for targeting the Shiga-toxin-producing virulence genes (stx1 and stx2) as molecular markers. Additionally, Bst polymerase concentration and amplification conditions for bacterial detection were optimized. The sensitivity and specificity of the assay were also investigated and validated on artificially tainted (100-104 CFU/g) Korean beef samples. The cLAMP assay could detect 1 × 101 CFU/g at 65 °C for both genes, and the assay was confirmed to be specific for E. coli O157:H7. The cLAMP takes about an hour and does not require expensive devices (e.g., thermal cycler and detector). Hence, the cLAMP assay proposed herein can be used in the meat industry as a fast and simple way to detect E. coli O157:H7.


Subject(s)
Escherichia coli O157 , Animals , Cattle , Escherichia coli O157/genetics , Colorimetry , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , Food Microbiology
10.
Food Chem ; 423: 136269, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37172503

ABSTRACT

Buckwheat is considered a severe food allergen, and its adulteration and mislabeling cause serious health risks. For protecting consumers suffering from buckwheat allergy, a high-sensitivity detection method is necessary to accurately identify intentional or unintentional adulteration of buckwheat in processed foods. The study revealed that buckwheat contains a significant amount of thermally stable-soluble proteins (TSSPs), which keep antigenicity even after heat treatment. Therefore, we used TSSPs to produce three monoclonal antibodies (MAbs) specific to buckwheat. A MAbs cocktail solution was subjected to enhance the sensitivity of an indirect enzyme-linked immunosorbent assay (iELISA), and the LOD was 1 ng/mL. The MAbs cocktail solution based-iELISA can successfully detect buckwheat adulterated in processed foods. The results suggested that the TSSPs in buckwheat can be used as suitable immunogens, and MAbs produced can be used as bioreceptor to develop immunoassays and biosensors for detecting buckwheat in food facilities and processed foods.


Subject(s)
Biological Products , Fagopyrum , Food Hypersensitivity , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay , Allergens
11.
Meat Sci ; 197: 109065, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36481517

ABSTRACT

This study investigated the antimicrobial and antibiofilm efficacy of separate and combined treatments of Lactobacillus curvatus B67-produced postbiotic and the polyphenolic flavanol quercetin against Listeria monocytogenes and Salmonella enterica ser. Typhimurium. The antimicrobial potentiality of the postbiotic was chiefly associated with organic acids (e.g., lactic and acetic acids). At sub-minimum inhibitory concentration (1/2 MIC), the postbiotic and quercetin effectively reduced the pathogenic biofilm cells on processed pork sausage and meat-processing surfaces (e.g., stainless-steel and rubber). Moreover, the postbiotic exhibited strong residual antimicrobial efficacy over diverse pH and temperature ranges. In addition, the combination of postbiotic with quercetin increased the leakage of pathogenic intracellular metabolites (e.g., nucleic acids and protein) and inhibited pathogenic biofilm formation on both biotic and abiotic surfaces. Therefore, this study confirmed that lactic acid bacteria-derived postbiotic and plant-derived quercetin could be used as potential alternative bioprotective agents in the meat processing industry.


Subject(s)
Listeria monocytogenes , Salmonella enterica , Lactobacillus , Quercetin/pharmacology , Food Preservation , Meat , Food Microbiology
12.
Talanta ; 255: 124203, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36565526

ABSTRACT

A one-step immunoassay based on filtration was presented, which used microbeads for target analyte detection and filters with appropriate pore sizes to distinguish the complexity of target analyte and microbeads. For effective bacterial detection, the microbead size and the filter's pore size must be optimized. The optimal concentrations of the enzyme (urease) and antibody were determined at the maximum absorbance change, that is, the maximum pH change. The pH change was measured using a field-effect transistor (FET). The correlation between pH change and threshold voltage was estimated to be 21.7 mV/pH, and the correlation between pH change and the source-drain current was estimated to be -379 nA/pH. For the one-step immunoassay, antibodies against target bacteria were isolated from horse serum by filtration, and these antibodies were estimated to have a sufficiently high specificity to overcome cross-reactivity among five types of food poisoning-related bacteria: Escherichia coli O157, Salmonella typhimurium, Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. Finally, the FET-based one-step immunoassay was demonstrated for five types of food poisoning-related bacteria in human serum.


Subject(s)
Food Microbiology , Foodborne Diseases , Humans , Immunoassay , Salmonella typhimurium , Bacteria , Foodborne Diseases/diagnosis , Antibodies , Colony Count, Microbial , Food Contamination/analysis
13.
Anal Bioanal Chem ; 414(23): 6723-6733, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35931785

ABSTRACT

Noroviruses (NoVs) are the most common causes of epidemic gastroenteritis, responsible for at least 50% of all gastroenteritis outbreaks worldwide and significant causes of foodborne illness. In the USA, approximately 21 million illnesses attributable to NoVs have annually occurred. Therefore, there is a great demand to develop a rapid, low-cost, and accurate detection method for NoVs. This study first reported colorimetric helicase-dependent amplification (HDA) methods based on specific primers integrated with HRPzyme for the rapid and sensitive detection of NoV GI and GII. The colorimetric HDA methods exhibited a detection limit of 10 copies mL-1 of each NoV GI and GII and were confirmed to be specific to each NoV GI and GII. The period required to complete the HDA method was 2 h, including a step of RNA extraction and cDNA synthesis without expensive instruments such as a thermal cycler and detector. The cutoff value of the method for the oyster artificially inoculated with a known amount of NoV was all 102 copies g-1 for NoV GI and GII. Therefore, the HDA method developed in this study can be useful tool for the on-site detection of NoVs in food samples.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Norovirus , Caliciviridae Infections/diagnosis , Caliciviridae Infections/epidemiology , Colorimetry , DNA Primers/genetics , Gastroenteritis/epidemiology , Genotype , Humans , Norovirus/genetics , Phylogeny , RNA, Viral/genetics
14.
Biochip J ; 16(3): 334-341, 2022.
Article in English | MEDLINE | ID: mdl-35909466

ABSTRACT

One-step homogeneous immunoassay was developed for detecting influenza viruses A and B (Inf-A and Inf-B) using the switching peptide H2. As the fluorescence-labeled switching peptide dissociated from the binding pocket of detection antibodies, the fluorescence signal could be directly generated by the binding of Inf-A and Inf-B without washing (i.e., one-step immunoassay). For the one-step homogeneous immunoassay with detection antibodies in solution, graphene was labeled with the antibodies as a fluorescence quencher. To test the feasibility of the homogeneous one-step immunoassay, the stability of the antibody complex with the switching peptide was evaluated under different pH and salt conditions. The one-step homogeneous immunoassay with switching peptide was conducted using influenza virus antigens in phosphate-buffered saline and real samples with inactivated Inf-A and Inf-B spiked in serum. Finally, the one-step homogeneous immunoassay results were compared with those of commercially available lateral flow immunoassays.

15.
Food Res Int ; 156: 111163, 2022 06.
Article in English | MEDLINE | ID: mdl-35651029

ABSTRACT

Foodborne pathogen-mediated biofilms in food processing environments are severe threats to human lives. In the interest of human and environmental safety, natural substances with antimicrobial properties and generally regarded as safe (GRAS) status are the futuristic disinfectants of the food industry. In this study, the efficacy of bioactive, soluble products (metabolic by-products) from lactic acid bacteria (LAB) and plant-derived essential oils (EO) were investigated as biocidal agents. The postbiotic produced by kimchi-derived Leuconostoc mesenteroides J.27 isolate was analyzed for its metabolic components to reveal its antimicrobial potential against three pathogenic microorganisms (Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli). Additionally, the efficacy of food-grade EO (eugenol and thymol, respectively) was also assessed in our study. Determination of the minimum inhibitory concentration (MIC) of postbiotic and EO against three tested pathogens revealed that the sub-MIC (0.5 MIC) of postbiotic and EO could efficiently inhibit the biofilm formation on both seafood (squid) and seafood-processing surfaces (rubber and low-density polyethylene plastic). Moreover, the polymerase chain reaction (PCR) analysis confirmed that the LAB J.27 isolate possesses bacteriocin- and enzyme-coding genes. The residual antibacterial activity of the produced postbiotic was maintained over a diverse pH range (pH 1-6) but was entirely abolished at neutral or higher pH values. However, the activity was unaffected by exposure to high temperatures (100 and 121 °C) and storage (30 days). Notably, the leakage of intracellular metabolites, damage to DNA, and the down-regulation of biofilm-associated gene expression in the pathogens increased significantly (p > 0.05) following the combination treatment of postbiotic with thymol compared to postbiotic with eugenol. Nonetheless, all in vitro results indicated the prospective use of combining Leu. mesenteroides J.27-derived postbiotic with both EO as a "green preservative" in the seafood industry to inhibit the formation of pathogenic microbial biofilms.


Subject(s)
Anti-Infective Agents , Leuconostoc mesenteroides , Oils, Volatile , Vibrio parahaemolyticus , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Escherichia coli , Eugenol , Humans , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Prospective Studies , Pseudomonas aeruginosa , Seafood , Thymol/pharmacology
16.
Anal Chem ; 94(27): 9627-9635, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35762898

ABSTRACT

In this study, a homogeneous one-step immunoassay based on switching peptides is presented for the detection of influenza viruses A and B (Inf-A and Inf-B, respectively). The one-step immunoassay represents an immunoassay method that does not involve any washing steps, only treatment of the sample. In this method, fluorescence-labeled switching peptides quantitatively dissociate from the antigen-binding site of immunoglobulin G (IgG). In particular, the one-step immunoassay based on soluble detection antibodies with switching peptides is called a homogeneous one-step immunoassay. The immunoassay developed uses switching peptides labeled with two types of fluorescence dyes (FAM and TAMRA) and detection antibodies labeled with two types of fluorescence quenchers (TQ2 for FAM and TQ3 for TAMRA). The optimal switching peptides for the detection of Inf-A and Inf-B have been selected as L1-peptide and H2-peptide. The interactions between the four kinds of switching peptides and IgG have been analyzed using computational docking simulation and SPR biosensor. The location of labeling for the fluorescence quenchers has been determined based on the distance between the fluorescence dyes of the switching peptides and the fluorescence quenchers, calculated on the basis of the efficiency of fluorescence quenching, using the Förster equation. To demonstrate the feasibility of the one-step immunoassay, binding constants (KD) have been calculated for detection antibodies against Inf-A and Inf-B with target antigens (Inf-A and Inf-B) and switching peptides (L1- and H2-peptides), using an isotherm model. The immunoassay has been demonstrated to be feasible using antigens as well as real samples of Inf-A and Inf-B with a critical cycle number (Ct). The immunoassay has also been compared to other commercially available rapid test kits for Inf-A and Inf-B and found to be far more sensitive for detection of Inf-A and Inf-B over the entire detection range.


Subject(s)
Orthomyxoviridae , Antigens , Fluorescent Dyes/chemistry , Immunoassay/methods , Immunoglobulin G , Peptides/chemistry
17.
Biosensors (Basel) ; 12(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35049652

ABSTRACT

The highly sensitive detection of peanut allergens (PAs) using silicon-based electrolyte-gated transistors (Si-EGTs) was demonstrated. The Si-EGT was made using a top-down technique. The fabricated Si-EGT showed excellent intrinsic electrical characteristics, including a low threshold voltage of 0.7 V, low subthreshold swing of <70 mV/dec, and low gate leakage of <10 pA. Surface functionalization and immobilization of antibodies were performed for the selective detection of PAs. The voltage-related sensitivity (SV) showed a constant behavior from the subthreshold regime to the linear regime. The current-related sensitivity (SI) was high in the subthreshold regime and then significantly decreased as the drain current increased. The limit of detection (LOD) was calculated to be as low as 25 pg/mL based on SI characteristics, which is the lowest value reported to date in the literature for various sensor methodologies. The Si-EGT showed selective detection of PA through a non-specific control test. These results confirm that Si-EGT is a high-sensitivity and low-power biosensor for PA detection.


Subject(s)
Allergens/analysis , Arachis , Silicon , Transistors, Electronic , Electrolytes
18.
Biosens Bioelectron ; 202: 113976, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35042130

ABSTRACT

One-step immunoassay detects a target analyte simply by mixing a sample with a reagent solution without any washing steps. Herein, we present a one-step immunoassay that uses a peptide mimicking a target analyte (mimotope). The key idea of this strategy is that the mimotopes are screened from an autodisplayed FV-antibody library using monoclonal antibodies against target analytes. The monoclonal antibodies are bound to fluorescence-labeled mimotopes, which are quantitatively released into the solution when the target analytes are bound to the monoclonal antibodies. Thus, the target analyte is detected without any washing steps. For the mimotope screening, an FV-antibody library was exhibited on the outer membrane of E. coli with a diversity of >106 clones/library using autodisplay technology. The targeted clones were screened from the autodisplayed FV-antibody library using magnetic beads with immobilized monoclonal antibodies against food allergens. The analysis of binding properties of a control strain with mutant FV -antibodies composed of only CDR1 and CDR2 demonstrated that the CDR3 regions of the screened FV-antibodies showed binding affinity to food allergens. The CDR3 regions were synthesized into peptides as mimotopes for the corresponding food allergens (mackerel, peanuts, and pig fat). One-step immunoassays for food allergens were demonstrated using mimotopes against mackerel, peanut, and pig fat without any washing steps in solution without immobilization of antibodies to a solid support.


Subject(s)
Allergens/analysis , Biosensing Techniques , Animals , Arachis , Escherichia coli/genetics , Food , Immunoassay , Peptide Library , Perciformes , Swine
19.
Food Sci Biotechnol ; 30(6): 869-880, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34249393

ABSTRACT

This study aimed to characterize the bacterial community of commercial potting soils with or without Listeria monocytogenes inoculation at 5-35 °C using 16S metagenomic sequencing and evaluate the effect of natural amendments on the reduction L. monocytogenes in non-sterile potting soils. An increase in the expected operational taxonomic units of each sample with or without L. monocytogenes was proportional to the increasing storage temperatures after 5 days. Biodiversity was distinct among all potting soils for Shannon and inverse Simpson indices, with the highest diversity being observed in a soil sample stored at 35 °C for 5 days with L. monocytogenes. An increase in richness and diversity of soil bacterial community structure positively correlated with less survival of the invading L. monocytogenes. Particularly, garlic extract was demonstrated as a promising soil-amendment substrate, reducing L. monocytogenes by ≥ 4.50 log CFU/g in potting soils stored at 35 °C. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00925-9.

20.
Mol Plant Microbe Interact ; 34(10): 1157-1166, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34165327

ABSTRACT

Seed maceration and contamination with mycotoxin fumonisin inflicted by Fusarium verticillioides is a major disease concern for maize producers worldwide. Meta-analyses of quantitative trait loci for Fusarium ear rot resistance uncovered several ethylene (ET) biosynthesis and signaling genes within them, implicating ET in maize interactions with F. verticillioides. We tested this hypothesis using maize knockout mutants of the 1-aminocyclopropane-1-carboxylate (ACC) synthases ZmACS2 and ZmACS6. Infected wild-type seed emitted five-fold higher ET levels compared with controls, whereas ET was abolished in the acs2 and acs6 single and double mutants. The mutants supported reduced fungal biomass, conidia, and fumonisin content. Normal susceptibility was restored in the acs6 mutant with exogenous treatment of ET precursor ACC. Subsequently, we showed that fungal G-protein signaling is required for virulence via induction of maize-produced ET. F. verticillioides Gß subunit and two regulators of G-protein signaling mutants displayed reduced seed colonization and decreased ET levels. These defects were rescued by exogenous application of ACC. We concluded that pathogen-induced ET facilitates F. verticillioides colonization of seed, and, in turn, host ET production is manipulated via G-protein signaling of F. verticillioides to facilitate pathogenesis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Fumonisins , Fusarium , Ethylenes , GTP-Binding Proteins , Virulence , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...