Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(18): 21954-21963, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33909414

ABSTRACT

A new small-molecular thermally cross-linkable material {[4-(9-phenyl-9H-carbazol-4-yl)phenyl]-bis-(4'-vinylbiphenyl-4-yl)-amine} (PCP-bis-VBPA, PbV) containing the styrene moiety was synthesized for hole transport layers in wet processed organic light-emitting diodes (OLEDs). It was found that PbV exhibited relatively high glass temperatures above 154 °C and a triplet energy (T1) greater than 2.81 eV. This new synthetic hole transport material (HTM) forms very uniform films after cross-linking reaction with little pin-holes, although it was small-molecule-based cross-linkable HTM. However, to solve the certain minor non-uniformity caused by pinholes with various sizes, a semi-interpenetrating network was formed with well-known polymeric HTM with high mobility [e.g., poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), TFB, or poly(N,N'-bis-4-butylphenyl-N,N'-bisphenyl)benzidine, poly-TPD]. As a result, we successfully fabricated red phosphorescent OLED showing an efficiency of about 16.7 cd/A and 12.4% (external quantum efficiency) if we applied PbV blended with 20% of TFB or poly-TPD. In particular, the efficiency and lifetime are significantly improved by 1.5 and 4.5 times, respectively, compared to those of the control device without using blended HTM.

2.
J Nanosci Nanotechnol ; 18(9): 6455-6458, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29677813

ABSTRACT

Tin-based materials, due to their high theoretical capacity of 994 mAh g-1 are potential candidates which can substitute the commercialized graphite anodes (372 mAh g-1). However, practical usage of pure tin in Li-ion cells has been hampered by the tremendous volume expansion of more than 260% during the lithium insertion/extraction process, resulting in particle pulverization and electrical disconnection from the current collector. In order to overcome this shortcoming, Sn/Cu6Sn5/C composites in this work were prepared by using pulsed wire explosion in a liquid medium and subsequently in situ polymerization. For comparison, Sn/C composite without tin-copper chemical compounds are also fabricated under a similar process. The Sn/Cu6Sn5/C and Sn/C composites were used as anodes for lithium-ion batteries. The Sn/Cu6Sn5/C composite anode showed good cyclability (scalability) and was maintained up to a capacity of 430 mAh g-1 after 100 cycles at 1 C-rate. The rate capability of the Sn/Cu6Sn5/C composite anode also showed higher performance (280 mAh g-1) than that (200 mAh g-1) of Sn/C composite at the 5 C-rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...