Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Breed Sci ; 73(2): 146-157, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37404354

ABSTRACT

Citrus is a major cultivated crop in Japan, and new cultivars are of great interest in the Japanese and global market. Recently, the infringement of breeders' rights to citrus cultivars bred in Japan has become a problem related to the agricultural product export strategy promoted by the Japanese government. Cultivar identification systems using DNA markers are an effective tool for protecting breeders' rights. Here, a novel target cultivar-specific identification system using the chromatographic printed array strip method was developed for eight prominent Japanese citrus cultivars. A polymorphic InDel fragment specific to each cultivar was explored through the screening of published citrus InDel markers and next-generation sequencing of retrotransposon libraries. The cultivar-specific DNA marker set for each cultivar comprised 1-3 polymorphic InDel fragments in combination with a PCR-positive DNA marker for the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene. The DNA markers were detected within 3 hours from DNA extraction to the detection by the C-PAS4 membrane stick following multiplex PCR. The developed system is superior as a convenient, rapid, and cost-effective DNA diagnostic method during inspection. The proposed target cultivar-specific identification system is expected to serve as an efficient tool for the injunction of suspicious registered cultivars, contributing to the protection of breeders' rights.

3.
Front Plant Sci ; 14: 1163358, 2023.
Article in English | MEDLINE | ID: mdl-37342126

ABSTRACT

In citrus breeding programs, male sterility is an important trait for developing seedless varieties. Sterility associated with the male sterile cytoplasm of Kishu mandarin (Kishu-cytoplasm) has been proposed to fit the cytoplasmic male sterility (CMS) model. However, it remains undetermined whether CMS in citrus is controlled by interactions between sterile cytoplasm and nuclear restorer-of-fertility (Rf) genes. Accordingly, mechanisms underlying the control of the wide phenotypic variation in pollen number for breeding germplasm should be elucidated. This study aimed to identify complete linkage DNA markers responsible for male sterility at the MS-P1 region based on fine mapping. Two P-class pentatricopeptide repeat (PPR) family genes were identified as candidates for Rf based on predicted mitochondrial localization and higher expression in a male fertile variety/selected strain than in a male sterile variety. Eleven haplotypes (HT1-HT11) at the MS-P1 region were defined based on genotyping of DNA markers. Association analysis of diplotypes at the MS-P1 region and the number of pollen grains per anther (NPG) in breeding germplasms harboring Kishu-cytoplasm revealed that the diplotypes in this region influenced NPG. Among these haplotypes, HT1 is a non-functional restorer-of-fertility (rf) haplotype; HT2, a less-functional Rf; HT3-HT5 are semi-functional Rfs; and HT6 and HT7 are functional Rfs. However, the rare haplotypes HT8-HT11 could not be characterized. Therefore, P-class PPR family genes in the MS-P1 region may constitute the nuclear Rf genes within the CMS model, and a combination of the seven haplotypes could contribute to phenotypic variation in the NPG of breeding germplasms. These findings reveal the genomic mechanisms of CMS in citrus and will contribute to seedless citrus breeding programs by selecting candidate seedless seedlings using the DNA markers at the MS-P1 region.

4.
J Agric Food Chem ; 70(2): 543-553, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34964635

ABSTRACT

Nobiletin (3',4',5,6,7,8-hexamethoxyflavone) is a polymethoxylated flavonoid specifically accumulated in citrus fruit with numerous beneficial effects to human health. In this study, a novel O-methyltransferase (CitOMT2) was isolated from three citrus varieties, Ponkan mandarin (Citrus reticulata Blanco), Nou 6 ("King mandarin" × "Mukaku-kishu"), and Satsuma mandarin (Citrus unshiu Marc.), and its functions were characterized in vitro. The gene expression results showed that CitOMT2 was highly expressed in the two nobiletin abundant varieties of Ponkan mandarin and Nou 6. However, the expression level of CitOMT2 was low in the flavedo of Satsuma mandarin, in which only a small amount of nobiletin was accumulated. Functional analysis suggested that CitOMT2 was a caffeic acid 8-O-methyltransferase, and it catalyzed the O-methylation of 7,8-dihydroxyflavone at 8-OH. As the methylation of flavone at 8-OH was required for nobiletin biosynthesis, the results presented in this study suggested that CitOMT2 was a key gene regulating nobiletin accumulation in citrus fruit.


Subject(s)
Citrus , Flavones , Caffeic Acids , Citrus/genetics , Fruit , Humans , Methyltransferases/genetics
5.
Tree Physiol ; 41(11): 2171-2188, 2021 11 08.
Article in English | MEDLINE | ID: mdl-33960371

ABSTRACT

The biological and molecular traits of the Ponkan mandarin (Citrus reticulata Blanco) were characterized in an investigation of the mechanisms of field resistance against citrus canker disease caused by the bacterial pathogen, Xanthomonas citri subsp. citri (Xcc). Various conventional citrus varieties that show diverse responses to Xcc were investigated, and the temporal changes in Xcc titer in response to linalool concentrations among the varieties revealed differences in Xcc proliferation trends in the inoculated leaves of the immune, field-resistant and susceptible varieties. In addition, increased linalool accumulation was inversely related to Xcc titers in the field-resistant varieties, which is likely caused by host--pathogen interactions. Quantitative trait locus (QTL) analysis using the F1 population of the resistant Ponkan mandarin and susceptible 'Harehime' ('E-647' × 'Miyagawa-wase') cultivar revealed that linalool accumulation and Xcc susceptibility QTLs overlapped. These results provide novel insights into the molecular mechanisms of linalool-mediated field resistance to Xcc, and suggest that high linalool concentrations in leaves has an antibacterial effect and becomes a candidate-biomarker target for citrus breeding to produce seedlings with linalool-mediated field resistance against Xcc.


Subject(s)
Citrus , Acyclic Monoterpenes , Citrus/genetics , Citrus/microbiology , Plant Diseases/microbiology , Trees , Xanthomonas
6.
PLoS One ; 16(2): e0246468, 2021.
Article in English | MEDLINE | ID: mdl-33539435

ABSTRACT

To enrich carotenoids, especially ß-cryptoxanthin, in juice sac tissues of fruits via molecular breeding in citrus, allele mining was utilized to dissect allelic variation of carotenoid metabolic genes and identify an optimum allele on the target loci characterized by expression quantitative trait (eQTL) analysis. SNPs of target carotenoid metabolic genes in 13 founders of the Japanese citrus breeding population were explored using the SureSelect target enrichment method. An independent allele was determined based on the presence or absence of reliable SNPs, using trio analysis to confirm inheritability between parent and offspring. Among the 13 founders, there were 7 PSY alleles, 7 HYb alleles, 11 ZEP alleles, 5 NCED alleles, and 4 alleles for the eQTL that control the transcription levels of PDS and ZDS among the ancestral species, indicating that some founders acquired those alleles from them. The carotenoid composition data of 263 breeding pedigrees in juice sac tissues revealed that the phenotypic variance of carotenoid composition was similar to that in the 13 founders, whereas the mean of total carotenoid content increased. This increase in total carotenoid content correlated with the increase in either or both ß-cryptoxanthin and violaxanthin in juice sac tissues. Bayesian statistical analysis between allelic composition of target genes and carotenoid composition in 263 breeding pedigrees indicated that PSY-a and ZEP-e alleles at PSY and ZEP loci had strong positive effects on increasing the total carotenoid content, including ß-cryptoxanthin and violaxanthin, in juice sac tissues. Moreover, the pyramiding of these alleles also increased the ß-cryptoxanthin content. Interestingly, the offset interaction between the alleles with increasing and decreasing effects on carotenoid content and the epistatic interaction among carotenoid metabolic genes were observed and these interactions complexed carotenoid profiles in breeding population. These results revealed that allele composition would highly influence the carotenoid composition in citrus fruits. The allelic genotype information for the examined carotenoid metabolic genes in major citrus varieties and the trio-tagged SNPs to discriminate the optimum alleles (PSY-a and ZEP-e) from the rest would promise citrus breeders carotenoid enrichment in fruit via molecular breeding.


Subject(s)
Carotenoids/metabolism , Citrus/genetics , Fruit/genetics , Plant Breeding , Alleles , Citrus/metabolism , Fruit/metabolism , Genes, Plant , Japan , Polymorphism, Single Nucleotide , Quantitative Trait Loci
7.
Food Chem ; 335: 127621, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32738533

ABSTRACT

In the present study, the effects of blue LED light on the regreening of citrus fruit were investigated in an in vitro system of Valencia orange flavedos. The results showed that blue LED light irradiation induced regreening in the flavedos. After four-week culture in vitro, the flavedos exhibited obviously green color in the blue LED light treatment, while the flavedos in the control were still in orange color. During the regreening process, the blue LED light treatment induced chlorophyll accumulation, and substantially altered the carotenoid composition in the flavedos. Compared with the control, the content of 9-cis-violaxanthin was decreased, while the contents of lutein, ß-carotene, and all-trans-violaxanthin were increased by blue LED light. In addition, gene expression results showed that the up-regulation of CitLCYe and down-regulation of CitLCYb2 by blue LED light led to a shift from ß,ß-branch to ß,ε-branch of the carotenoid biosynthetic pathway.


Subject(s)
Citrus sinensis/metabolism , Citrus sinensis/radiation effects , Light , Pigmentation/radiation effects , Carotenoids/metabolism , Chlorophyll/metabolism , Citrus/metabolism , Fruit/metabolism , Fruit/radiation effects , Gene Expression Regulation, Plant/radiation effects , Xanthophylls/metabolism , beta Carotene/metabolism
8.
Breed Sci ; 70(3): 363-372, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32714059

ABSTRACT

A citrus cultivar identification system using CAPS marker has been developed on nursery trees, but this needs to be extended to include various product types, such as imported fruits and processed products. Here, we developed a new cultivar identification system using TaqMan-MGB SNP genotyping assay. Eight probe and primer sets were designed to amplify PCR fragments <100 bp to enable the genotyping of fresh and processed fruits in which predicted that insufficient quantities of DNA and residual impurities in the DNA extracts. The TaqMan-MGB SNP genotyping assay was stable and reproducible, and were confirmed to apply various sample sources, including leaves, fresh fruit, juice, canned fruit, and dry fruit. They could provide at least a single differentiating SNP to discriminate any paired combination among 48 citrus cultivars. Minimal marker subsets to identify the target cultivar were listed for each of 18 registered cultivars with valid patent. The allelic SNP genotypes of 48 citrus cultivars, which cover more than 98% of all citrus fruit shipment produced in Japan, is valuable for the referencing information in the DNA-based identification for fresh and processed fruits. This identification system will help protect registered cultivars and facilitate food fraud inspections.

9.
Breed Sci ; 70(2): 200-211, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32523402

ABSTRACT

Citrus species are some of the most valuable and widely consumed fruits globally. The genome sequences of representative citrus (e.g., Citrus clementina, C. sinensis, C. grandis) species have been released but the research base for mandarin molecular breeding is still poor. We assembled the genomes of Citrus unshiu and Poncirus trifoliata, two important species for citrus industry in Japan, using hybrid de novo assembly of Illumina and PacBio sequence data, and developed the Mikan Genome Database (MiGD). The assembled genome sizes of C. unshiu and P. trifoliata are 346 and 292 Mb, respectively, similar to those of citrus species in public databases; they are predicted to possess 41,489 and 34,333 protein-coding genes in their draft genome sequences, with 9,642 and 8,377 specific genes when compared to C. clementina, respectively. MiGD is an integrated database of genome annotation, genetic diversity, and Cleaved Amplified Polymorphic Sequence (CAPS) marker information, with these contents being mutually linked by genes. MiGD facilitates access to genome sequences of interest from previously reported linkage maps through CAPS markers and obtains polymorphism information through the multiple genome browser TASUKE. The genomic resources in MiGD (https://mikan.dna.affrc.go.jp) could provide valuable information for mandarin molecular breeding in Japan.

10.
BMC Plant Biol ; 20(1): 224, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32429838

ABSTRACT

BACKGROUND: Global warming will expand the range of new and invasive pathogens in orchards, and subsequently increase the risk of disease epidemics and economic losses. The development of new resistant plant varieties can help to reduce the impact of pathogens, however, the breeding speed can be extremely slow, due to the growth rates of the plants, and the availability of resistance genes. Citrus trees are suffering immense damage from serious diseases such as citrus canker (XCC), huanglongbing (HLB), and citrus tristeza virus (CTV). A fast-track breeding system, that aimed at shortening the duration for disease resistance breeding by incorporating the resistance genes from related species to commercial varieties, has been developed using the integration of precocious transgenic trifoliate orange with the overexpression of CiFT and MAS. It was applied here to incorporate CTV resistance of trifoliate orange into citrus germplasm. RESULTS: One generation of backcrossed breeding, that would normally take at least 5 years, was achieved in a single year by fast-track breeding system. Linkage analysis using the corresponding DNA markers revealed that CTV resistance and T-DNA integrated regions were found in different linkage groups, and they were independently segregated in the BC progenies. The CTV resistant null segregants, in which the T-DNA integrated region was removed from their genome, were feasibly obtained by MAS in each generation of the BC progenies, and their CTV resistance was confirmed by immunological analysis. Several BC3 null segregants, whose genetic backgrounds had been substituted into citrus germplasm, except for the haplotype block of CTV resistance, were successfully obtained. CGH and NGS analyses revealed that the T-DNA integrated region was safely segregated out in null segregants. CONCLUSION: Fast-track breeding systems are expected to shorten the required breeding time by more than one-fifth in comparison with conventional cross breeding techniques. Using this system, we obtained BC3-8, whose genetic background was successfully substituted except for the CTV resistance locus, and could be a novel mandarin breeding material. The fast-track breeding system will be useful to introduce important traits from related species to citrus germplasm while also drastically reducing the time required for breeding.


Subject(s)
Citrus/genetics , Closterovirus/physiology , Plant Breeding/methods , Plant Diseases/virology , Citrus/virology , Disease Resistance/genetics , Genetic Markers , Germ Cells, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/virology , Selection, Genetic
11.
BMC Plant Biol ; 18(1): 166, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30103701

ABSTRACT

BACKGROUND: Somatic embryogenesis in nucellar tissues is widely recognized to induce polyembryony in major citrus varieties such as sweet oranges, satsuma mandarins and lemons. This capability for apomixis is attractive in agricultural production systems using hybrid seeds, and many studies have been performed to elucidate the molecular mechanisms of various types of apomixis. To identify the gene responsible for somatic embryogenesis in citrus, a custom oligo-DNA microarray including predicted genes in the citrus polyembryonic locus was used to compare the expression profiles in reproductive tissues between monoembryonic and polyembryonic varieties. The full length of CitRKD1, which was identified as a candidate gene responsible for citrus somatic embryogenesis, was isolated from satsuma mandarin and its molecular function was investigated using transgenic 'Hamlin' sweet orange by antisense-overexpression. RESULTS: The candidate gene CitRKD1, predominantly transcribed in reproductive tissues of polyembryonic varieties, is a member of the plant RWP-RK domain-containing protein. CitRKD1 of satsuma mandarin comprised two alleles (CitRKD1-mg1 and CitRKD1-mg2) at the polyembryonic locus controlling embryonic type (mono/polyembryony) that were structurally divided into two types with or without a miniature inverted-repeat transposable element (MITE)-like insertion in the upstream region. CitRKD1-mg2 with the MITE insertion was the predominant transcript in flowers and young fruits where somatic embryogenesis of nucellar cells occurred. Loss of CitRKD1 function by antisense-overexpression abolished somatic embryogenesis in transgenic sweet orange and the transgenic T1 plants were confirmed to derive from zygotic embryos produced by self-pollination by DNA diagnosis. Genotyping PCR analysis of 95 citrus traditional and breeding varieties revealed that the CitRKD1 allele with the MITE insertion (polyembryonic allele) was dominant and major citrus varieties with the polyembryonic allele produced polyembryonic seeds. CONCLUSION: CitRKD1 at the polyembryonic locus plays a principal role in regulating citrus somatic embryogenesis. CitRKD1 comprised multiple alleles that were divided into two types, polyembryonic alleles with a MITE insertion in the upstream region and monoembryonic alleles without it. CitRKD1 was transcribed in reproductive tissues of polyembryonic varieties with the polyembryonic allele. The MITE insertion in the upstream region of CitRKD1 might be involved in regulating the transcription of CitRKD1.


Subject(s)
Apomixis/genetics , Citrus/genetics , DNA Transposable Elements/genetics , Alleles , Citrus/physiology , Cloning, Molecular , DNA Transposable Elements/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Oligonucleotide Array Sequence Analysis , Phylogeny , Plant Somatic Embryogenesis Techniques , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Seeds/physiology , Sequence Alignment , Sequence Analysis, DNA , Transcriptome
12.
Mol Plant Pathol ; 19(9): 2077-2093, 2018 09.
Article in English | MEDLINE | ID: mdl-29573543

ABSTRACT

Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus-growing areas worldwide. The pathogen may infect the fruit for 20-24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d-Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d-limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d-limonene content, an over-accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up-regulation of different pathogenesis-related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases.


Subject(s)
Citrus sinensis/metabolism , Citrus sinensis/microbiology , Fruit/metabolism , Fruit/microbiology , Genetic Engineering/methods , Intramolecular Lyases/metabolism , Monoterpenes/metabolism , Acyclic Monoterpenes
13.
Tree Physiol ; 38(5): 755-771, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29182786

ABSTRACT

After a long juvenile period, citrus trees undergo seasonal flowering cycles. Under natural conditions, citrus flowering is regulated mainly by low ambient temperatures around 15-20 °C and water deficit stress. Recent studies have revealed that fluctuations in the expression of citrus homologs of FLOWERING LOCUS T (FT, encoding a flowering integrator) are correlated with their presumed role as flower-promoting signals. Previous ectopic expression analyses have demonstrated the flower-promoting function of citrus FT homologs. In this study, we examined whether abscisic acid (ABA) affects the expression of FT homologs and the flowering induced by low ambient temperatures. Application of exogenous ABA to potted Satsuma mandarin (Citrus unshiu Marc.) trees resulted in transient accumulation of citrus FT homolog transcripts. The promoter of one citrus FT homolog, CiFT3, was active in transgenic A. thaliana (Arabidopsis thaliana) and responded to exogenous and endogenous ABA. CiFT3 is preferentially expressed in shoots, and its expression was affected by flower-inductive treatments. Endogenous ABA accumulated in mandarin shoots during the floral induction period at 15 °C and under field conditions. The accumulation of ABA was correlated with the accumulation of FT homolog transcripts and flowering intensity. It was consistent with changes in the expression of genes related to ABA metabolism. The abundance of carotenoid precursors that serve as substrates for ABA biosynthesis decreased in leaves during the accumulation of ABA. Our data indicate that ABA and carotenoid precursors in leaves influence the flowering of mandarin trees induced by low temperature.


Subject(s)
Abscisic Acid/metabolism , Citrus/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Arabidopsis/metabolism , Citrus/metabolism , Cold Temperature , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism
14.
Breed Sci ; 67(4): 382-392, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29085248

ABSTRACT

Phytoene synthase (PSY) is one of the key regulatory enzyme on the biosynthesis and accumulation of carotenoid in citrus fruits. The transcriptional diversity of PSY is mainly attributed to the structural variation in promoter region among PSY alleles. In aim to clarify how this transcriptional diversity is regulated among them, PSY alleles responsible for carotenoid biosynthesis in the fruits are characterized and their promoter sequences were compared. Based on gene structure and expression pattern of PSY homologues on the clementine mandarin genome sequence, PSY alleles responsible for carotenoid biosynthesis are derived from a single locus in the scaffold 6. AG mapping population possessed four PSY alleles derived from parent lines of A255 and G434, and their F1 individuals with PSY-g2 allele tended to have low transcription level. From sequence comparison of their promoter regions, the cis-motif alternation from MYBPZM to RAV1AAT might be a candidate to influence the transcription level. Among the ancestral pedigree varieties of AG mapping population, the transcription level of PSY correlated with genotypes of MYBPZM and RAV1AAT motifs in the promoter region of PSY alleles, so that homozygous genotype of MYBPZM showed higher transcription level while heterozygous genotype of MYBPZM and RAV1AAT showed lower transcription level.

15.
Tree Physiol ; 37(5): 654-664, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28131994

ABSTRACT

In order to clarify whether high linalool content in citrus leaves alone induces strong field resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), and to assess whether this trait can be transferred to a citrus type highly sensitive to the bacterium, transgenic 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) plants over-expressing a linalool synthase gene (CuSTS3-1) were generated. Transgenic lines (LIL) with the highest linalool content showed strong resistance to citrus canker when spray inoculated with the bacterium. In LIL plants inoculated by wounding (multiple-needle inoculation), the linalool level was correlated with the repression of the bacterial titer and up-regulation of defense-related genes. The exogenous application of salicylic acid, methyl jasmonate or linalool triggered responses similar to those constitutively induced in LIL plants. The linalool content in Ponkan mandarin leaves was significantly higher than that of leaves from six other representative citrus genotypes with different susceptibilities to Xcc. We propose that linalool-mediated resistance might be unique to citrus tissues accumulating large amounts of volatile organic compounds in oil cells. Linalool might act not only as a direct antibacterial agent, but also as a signal molecule involved in triggering a non-host resistance response against Xcc.


Subject(s)
Citrus/genetics , Disease Resistance/genetics , Monoterpenes/analysis , Plant Diseases/genetics , Xanthomonas/pathogenicity , Acyclic Monoterpenes , Citrus/microbiology , Gene Expression Regulation, Plant , Genes, Plant , Hydro-Lyases/genetics , Plant Diseases/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology
16.
Food Chem ; 217: 139-150, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664619

ABSTRACT

Citrus fruits are characterized by a complex mixture of volatiles making up their characteristic aromas, being the d-limonene the most abundant one. However, its role on citrus fruit and juice odor is controversial. Transgenic oranges engineered for alterations in the presence or concentration of few related chemical groups enable asking precise questions about their contribution to overall odor, either positive or negative, as perceived by the human nose. Here, either down- or up-regulation of a d-limonene synthase allowed us to infer that a decrease of as much as 51 times in d-limonene and an increase of as much as 3.2 times in linalool in juice were neutral for odor perception while an increase of only 3 times in ethyl esters stimulated the preference of 66% of the judges. The ability to address these questions presents exciting opportunities to understand the basic principles of selection of food.


Subject(s)
Citrus sinensis/enzymology , Fruit and Vegetable Juices , Intramolecular Lyases/metabolism , Odorants , Smell/physiology , Adult , Aged , Citrus sinensis/chemistry , Down-Regulation/physiology , Female , Fruit/chemistry , Fruit/enzymology , Fruit and Vegetable Juices/analysis , Gas Chromatography-Mass Spectrometry/methods , Humans , Male , Middle Aged , Odorants/analysis , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/enzymology , Up-Regulation/physiology , Young Adult
17.
Data Brief ; 9: 355-61, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27689126

ABSTRACT

We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S), down-regulated (AS) or non-altered (EV; control) ("Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception"(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016)) [1]). Data from volatile identification and quantification by HS-SPME and GC-MS were classified by Principal Component Analysis (PCA) individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.

18.
Breed Sci ; 66(1): 3-17, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27069387

ABSTRACT

Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering.

19.
Plant Sci ; 243: 35-48, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26795149

ABSTRACT

To explore the transcription factors associated with carotenoid metabolism in citrus fruit, one transcription factor (CubHLH1) was selected through microarray screening in Satsuma mandarin (Citrus unshiu Marc.) fruit, which was treated with exogenous ethylene or gibberellin (GA), accelerating or retarding carotenoid accumulation in peel, respectively. The amino acid sequence of CubHLH1 has homology to Arabidopsis activation-tagged bri1 suppressor 1 (ATBS1) interacting factor (AIF), which is functionally characterized as a negative regulator of the brassinolide (BR) signalling pathway. Yeast two-hybrid analysis revealed that protein for CubHLH1 could interact with Arabidopsis and tomato ATBS1. Overexpression of CubHLH1 caused a dwarf phenotype in transgenic tomato (Solanum lycopersicum L.), suggesting that CubHLH1 has a similar function to Arabidopsis AIF. In the transgenic tomato fruit at ripening stage, the lycopene content was reduced along with the changes in carotenoid biosynthetic gene expression. The abscisic acid (ABA) content of all the transgenic tomato fruit was higher than that of the wild type. These results implied that CubHLH1 is considered to have a similar function to Arabidopsis AIFs and might be directly involved in carotenoid metabolism in mature citrus fruit.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Carotenoids/metabolism , Citrus/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Solanum lycopersicum/genetics , Amino Acid Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Citrus/metabolism , Solanum lycopersicum/metabolism , Molecular Sequence Data , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sequence Alignment
20.
Breed Sci ; 66(5): 683-691, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28163584

ABSTRACT

Satsuma mandarins (Citrus unshiu Marc.) are the predominant cultivated citrus variety in Japan. Clarification of its origin would prove valuable for citrus taxonomy and mandarin breeding programs; however, current information is limited. We applied genome-wide genotyping using a 384 citrus single nucleotide polymorphism (SNP) array and MARCO computer software to investigate the satsuma mandarin parentage. Genotyping data from 206 validated SNPs were obtained to evaluate 67 citrus varieties and lines. A total of five parent-offspring relationships were newly found by MARCO based on the 206 SNP genotypes, indicating that 'Kishuu mikan' type mandarins (Citrus kinokuni hort. ex Tanaka accession 'Kishuu mikan' and 'Nanfengmiju') and 'Kunenbo' type mandarins (Citrus nobilis Lour. var. kunip Tanaka accession 'Kunenbo' and 'Bendiguangju') are possible parents of the satsuma mandarin. Moreover, cleaved amplified polymorphic sequences analysis showed that the genotypes of four regions in chloroplast DNA of 'Kishuu mikan' type mandarins were identical to that of the satsuma mandarin. Considering the historical background, satsuma mandarins may therefore derive from an occasional cross between a 'Kishuu mikan' type mandarin seed parent (derivative or synonym of 'Nanfengmiju') and a 'Kunenbo' type mandarin pollen parent (derivative or synonym of 'Bendiguangju').

SELECTION OF CITATIONS
SEARCH DETAIL
...