Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 236(Pt 1): 116733, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37507042

ABSTRACT

BACKGROUND: The impact of air pollution on neurodevelopment in children has attracted much attention in recent times. We aim to clarify the association between prenatal and postnatal air pollutant exposure and children's cognitive performance and behavior at age six. METHODS: This study was conducted based on a birth cohort study in Japan. Children's intelligence quotient (IQ) was assessed using the Wechsler Intelligence Scale for Children and a score <85 was deemed as low intelligence. A score ≥60 on the Child Behavior Checklist indicated behavioral problems. Exposure to outdoor fine particulate matter (PM2.5) during pregnancy and early childhood was estimated using a spatiotemporal model, while indoor concentrations of air pollutants inside subjects' homes were measured for a week when the child was of ages 1.5 and 3. The associations of exposure to air pollution during pregnancy and after childbirth with cognitive performance and behavior were analyzed using logistic regression models. RESULTS: The estimated exposure to outdoor PM2.5 during pregnancy and early childhood was not associated with decreased cognitive performance. However, exposure during the first trimester, 0-1 and 3-5 years of age was associated with children's externalizing problems (odds ratios (ORs) were 2.77 [95% confidence interval (CI): 1.05-7.29], 1.66 [95%CI: 1.05-2.62], and 1.80 [95%CI: 1.19-2.74] per interquartile range (IQR) increase, respectively). Exposure to indoor PM2.5 and coarse particles after childbirth was associated with lower full scale IQ (ORs were 1.46 [95%CI: 1.03-2.08] and 1.85 [95%CI: 1.12-3.07] per IQR increase, respectively). However, some inverse associations were also observed. CONCLUSIONS: These results suggest associations between prenatal and postnatal exposure to outdoor air pollution and behavioral problems, and between indoor air pollution after childbirth and cognitive performance at age six. However, the effects of exposure to outdoor PM2.5 during pregnancy on cognitive performance were not observed.

2.
Sci Total Environ ; 894: 165058, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37353031

ABSTRACT

It has been reported that ambient ozone concentrations in Japan have not been effectively suppressed by precursor emission controls. In this study, we developed an unprecedented long-term emission inventory of ozone precursors, including nitrogen oxide (NOX) and volatile organic compounds (VOCs), in Japan. The developed emission inventory, which explicitly represents changes in emissions caused by emission controls and variation in activities from 2000 to 2019, revealed that emission controls implemented for vehicles, large point sources, and fugitive VOC sources effectively reduced precursor emissions. The impact of emission changes on ozone concentrations at six different timescales was evaluated using air quality simulations. Three of them corresponded to annual mean values of daily ozone concentrations, and the others corresponded to annual high ozone concentrations. The simulations performed better at higher ozone concentrations. The simulation results suggested that emission controls have helped suppress annual high ozone concentrations, whereas the annual mean values of daily ozone concentrations may have increased in populated urban areas because reduced NOX emissions weakened the titration of ozone. Overall changes in the simulated ozone concentrations over different timescales were generally consistent with those in the observed ozone concentrations. These findings highlight the importance of evaluating the impact of emission controls on ozone concentrations over multiple timescales. The differences in the sensitivities of ozone concentrations to emission controls were clearly explained by the ozone sensitivity regimes implied by the ratios of formaldehyde to nitrogen dioxide. The outcomes of this study could assist countries beyond Japan in developing effective strategies to manage ozone pollution.

3.
Sci Total Environ ; 876: 162846, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36924964

ABSTRACT

The Fukushima Daiichi Nuclear Power Plant accident caused a radioactive contamination of deposited radionuclides, including 137Cs, on the land surface. Cesium-137 deposited on the land surface was strongly adsorbed on soil particles and was then washed off through soil erosion. Trends of temporal variation of 137Cs wash-off varied greatly depending on land use. Therefore, it is important to reflect the characteristics of 137Cs migration processes in each land use to clarify the long-term fate of 137Cs. In this study, a 30-year simulation of environmental fate of 137Cs was conducted using a distributed radiocesium prediction model, taking into account the characteristics of the 137Cs behavior in each land use. Overall, in the Abukuma River basin, the 137Cs transported into the ocean for 30 years was estimated to correspond to 4.6 % of the initial deposition in the basin, and the effective half-life of 137Cs deposited in the basin was estimated to be 3.7 years shorter (by 11.6 %) than its physical half-life. These results suggested that 137Cs deposited from the accident could still remain for decades. Based on the analysis of the 137Cs behavior in land use, in 2011, the contribution of 137Cs export to the ocean from urban lands was estimated to correspond to 70 % of the total 137Cs export. Meanwhile, from 2012 to 2040, the contribution of 137Cs export from agricultural lands was estimated to correspond to 75 % of the total 137Cs export. The reduction ratios excluding radioactive decay of 137Cs remained in areas with and without human activities for 30 years after the accident, defined as the ratios of the total outflow to the initial deposition, were estimated to be 11.5 %-17.7 % and 0.4 %-1.4 %, respectively. These results suggested that human activities enhance the reduction of 137Cs remaining in land in the past and future.

4.
J Environ Radioact ; 225: 106452, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33186798

ABSTRACT

The Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 resulted in the deposition of significant quantities of radionuclides, including radiocesium (137Cs), over a wide area. Most of the deposited 137Cs is strongly adsorbed on fine soil particles such as clay and silt near the ground surface. Therefore, to estimate the environmental fate of 137Cs, it is necessary to predict its transport with eroded sediment in rainfall-runoff processes. In this study, a distributed radiocesium prediction model was applied to simulations of 137Cs transport associated with hydrological processes in the Abukuma River Basin, the largest river system in Fukushima, over the period of 2011-2012. The soil erosion potential, which is a key input to the distributed radiocesium prediction model, was estimated using the Universal Soil Loss Equation (USLE). This study focused on the uncertainty in estimating the environmental fate of 137Cs associated with the USLE factors. The USLE has five physically meaningful factors: the rainfall and runoff factor (R), soil erodibility factor (K), topographic factor (LS), cover and management factor (C), and support practice factor (P). Because the USLE factors were determined using various methods, R, LS, and the product of C and P (C×P) were divided into two, three, and five cases, respectively, based on previous studies. Therefore, we conducted 30 different simulations. The average total 137Cs outflow during the computational period in the simulation cases using the same USLE factors was 13.3 and 11.7 TBq for R (two cases), 12.6, 13.9 and 10.9 TBq for LS (three cases), and 26.5, 8.64, 0.47, 22.8 and 4.03 TBq for C×P (five cases). For the total outflow, C and P had the highest uncertainty of all the USLE factors. The outflow rates of the average total 137Cs in the simulation cases using the same C and P from the croplands and forest areas and from the undisturbed croplands and paddy fields were 62-91% and 18-34%, respectively. These results were due to the high erodibility of the croplands, the large forest areas in grids with high 137Cs deposition density, and the high concentration of 137Cs in the soil of the undisturbed croplands and paddy fields. This study indicates that land use, especially forest areas, croplands, and undisturbed paddy fields, has a significant impact on the environmental fate of 137Cs.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Japan , Rivers , Soil Erosion , Soil Pollutants, Radioactive/analysis , Uncertainty , Water Pollutants, Radioactive/analysis
5.
Environ Pollut ; 244: 414-422, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30352356

ABSTRACT

Biomass burning (BB), such as, crop field burning during the post-harvest season, emits large amounts of air pollutants (e.g., PM2.5) that severely impact human health. However, it is challenging to evaluate the impact of BB on PM2.5 due to uncertainties in the size and location of sources as well as their temporal and spatial variability. This study focused on the impacts of BB on local pollution as well as the long-range transport of PM2.5 in Northeast Asia resulting from a huge field BB event in Northeast China during the autumn of 2014. Air quality simulations using the Community Multiscale Air Quality (CMAQ) model were conducted in the year 2014 over the horizontal domains covering Northeast Asia, including the Japanese mainland. In the baseline simulation (Base), field BB emissions were derived from Fire INventory from NCAR (FINN) v1.5 for the year 2014. The model reasonably captured the daily mean PM2.5 mass concentrations, however, it underestimated concentrations in autumn around Northeast China where irregular field BB following the harvest occurred frequently. To address the underestimation of emissions from BB sources in China, another simulation with boosted BB sources from cropland area (FINN20_crop) was conducted in addition to the Base simulation. The model performance of FINN20_crop was significantly improved and showed smaller biases and higher indices of agreement between simulated and observed values in comparison to those of Base. To evaluate long-range transport of PM2.5 from BB sources in China towards Japan, CMAQ with brute-force method (CMAQ/BFM)-estimated BB contributions for Base and FINN20_crop cases were compared with Positive Matrix Factorization (PMF)-estimated BB contributions at Noto Peninsula in Japan. The CMAQ/BFM-estimated contributions from FINN20_crop were in greater agreement with the PMF-estimated contributions. The comparison of BB contributions estimated by the two contrasting models also indicated large underestimations in the current BB emission estimates.


Subject(s)
Agriculture/methods , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Fires , Particulate Matter/analysis , Asia , Biomass , China , Humans , Japan , Seasons
6.
Environ Int ; 89-90: 212-21, 2016.
Article in English | MEDLINE | ID: mdl-26891184

ABSTRACT

Ambient PM2.5 pollution is a substantial threat to public health in global megacities. This paper reviews the PM2.5 pollution of 45 global megacities in 2013, based on mass concentration from official monitoring networks and composition data reported in the literature. The results showed that the five most polluted megacities were Delhi, Cairo, Xi'an, Tianjin and Chengdu, all of which had an annual average concentration of PM2.5 greater than 89µg/m(3). The five cleanest megacities were Miami, Toronto, New York, Madrid and Philadelphia, the annual averages of which were less than 10µg/m(3). Spatial distribution indicated that the highly polluted megacities are concentrated in east-central China and the Indo-Gangetic Plain. Organic matter and SNA (sum of sulfate, nitrate and ammonium) contributed 30% and 36%, respectively, of the average PM2.5 mass for all megacities. Notable seasonal variation of PM2.5 polluted days was observed, especially for the polluted megacities of China and India, resulting in frequent heavy pollution episodes occurring during more polluted seasons such as winter. Marked differences in PM2.5 pollution between developing and developed megacities require more effort on local emissions reduction as well as global cooperation to address the PM2.5 pollution of those megacities mainly in Asia.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Urbanization , Air Pollutants/chemistry , Asia , Cities , Europe , North America , Particle Size , Particulate Matter/chemistry , Seasons
7.
J Air Waste Manag Assoc ; 64(4): 374-87, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24843910

ABSTRACT

UNLABELLED: Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). IMPLICATIONS: The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Environmental Monitoring , Nitrates/analysis , Nitric Acid/analysis , Particulate Matter/analysis , Sulfates/analysis , Atmosphere/chemistry , Humidity , Models, Theoretical , Particle Size , Seasons , Temperature , Tokyo , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...