Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
2.
Lancet Haematol ; 11(5): e368-e382, 2024 May.
Article in English | MEDLINE | ID: mdl-38697731

ABSTRACT

Diamond-Blackfan anaemia (DBA), first described over 80 years ago, is a congenital disorder of erythropoiesis with a predilection for birth defects and cancer. Despite scientific advances, this chronic, debilitating, and life-limiting disorder continues to cause a substantial physical, psychological, and financial toll on patients and their families. The highly complex medical needs of affected patients require specialised expertise and multidisciplinary care. However, gaps remain in effectively bridging scientific discoveries to clinical practice and disseminating the latest knowledge and best practices to providers. Following the publication of the first international consensus in 2008, advances in our understanding of the genetics, natural history, and clinical management of DBA have strongly supported the need for new consensus recommendations. In 2014 in Freiburg, Germany, a panel of 53 experts including clinicians, diagnosticians, and researchers from 27 countries convened. With support from patient advocates, the panel met repeatedly over subsequent years, engaging in ongoing discussions. These meetings led to the development of new consensus recommendations in 2024, replacing the previous guidelines. To account for the diverse phenotypes including presentation without anaemia, the panel agreed to adopt the term DBA syndrome. We propose new simplified diagnostic criteria, describe the genetics of DBA syndrome and its phenocopies, and introduce major changes in therapeutic standards. These changes include lowering the prednisone maintenance dose to maximum 0·3 mg/kg per day, raising the pre-transfusion haemoglobin to 9-10 g/dL independent of age, recommending early aggressive chelation, broadening indications for haematopoietic stem-cell transplantation, and recommending systematic clinical surveillance including early colorectal cancer screening. In summary, the current practice guidelines standardise the diagnostics, treatment, and long-term surveillance of patients with DBA syndrome of all ages worldwide.


Subject(s)
Anemia, Diamond-Blackfan , Consensus , Anemia, Diamond-Blackfan/diagnosis , Anemia, Diamond-Blackfan/therapy , Anemia, Diamond-Blackfan/genetics , Humans , Disease Management , Hematopoietic Stem Cell Transplantation
4.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38297832

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Subject(s)
De Lange Syndrome , Intellectual Disability , Humans , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Heterozygote , Intellectual Disability/genetics , Mutation , Phenotype
5.
Clin Case Rep ; 11(11): e8190, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38028059

ABSTRACT

Treatment of recurrent myelodysplastic syndrome (MDS) after hematopoietic cell transplantation (HCT) remains challenging. We present a 4-year-old girl experiencing early MDS relapse post-HCT treated with a multimodal strategy encompassing a second HCT and innovative targeted therapies. We underscore the potential of a comprehensive treatment approach in managing recurrent pediatric MDS.

6.
Lancet Haematol ; 10(12): e994-e1005, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898151

ABSTRACT

The recent application of whole exome or whole genome sequencing unveiled a plethora of germline variants predisposing to myeloid disorders, particularly myelodysplastic neoplasms. The presence of such variants in patients with myelodysplastic syndromes has important clinical repercussions for haematopoietic stem-cell transplantation, from donor selection and conditioning regimen to graft-versus-host disease prophylaxis and genetic counselling for relatives. No international guidelines exist to harmonise management approaches to this particular clinical scenario. Moreover, the application of germline testing, and how this informs clinical decisions, differs according to the expertise of individual clinical practices and according to different countries, health-care systems, and legislations. Leveraging the global span of the European Society for Blood and Marrow Transplantation (EBMT) network, we took a snapshot of the current European situation on these matters by disseminating an electronic survey to EBMT centres experienced in myelodysplastic syndromes transplantation. An international group of haematologists, transplantation physicians, paediatricians, nurses, and experts in molecular biology and constitutional genetics with experience in myelodysplastic syndromes contributed to this Position Paper. The panel met during multiple online meetings to discuss the results of the EBMT survey and to establish suggested harmonised guidelines for such clinical situations, which are presented here.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes , Neoplasms , Humans , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Surveys and Questionnaires , Transplantation Conditioning/methods , Disease Susceptibility , Graft vs Host Disease/prevention & control
7.
medRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808847

ABSTRACT

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.

8.
Front Pediatr ; 11: 1223191, 2023.
Article in English | MEDLINE | ID: mdl-37528877

ABSTRACT

Severe congenital neutropenia caused by jagunal homolog 1 (JAGN1) mutation is a rare condition resulting from maturation arrest secondary to endoplasmic reticulum stress response from impaired neutrophil protein glycosylation. Here, we report a case of a 4-year-old boy who presented with a history of recurrent infections and manifestations, including recurrent intracranial hemorrhage. A review of similar cases reported in the literature indicates that a bleeding diathesis has not been previously described in these patients. We hypothesize that this newly described association of bleeding complications in this patient with JAGN1 mutation is secondary to defective glycosylation in the normal functioning of platelets or clotting factors. Recurrent infections with intracranial hemorrhage, new focal neurologic defects, or altered mental status in a child should warrant a suspicion for this immunodeficiency for the prompt initiation of treatment and prophylaxis for life-threatening infections or trauma.

9.
Leukemia ; 37(8): 1698-1708, 2023 08.
Article in English | MEDLINE | ID: mdl-37391485

ABSTRACT

Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.


Subject(s)
Fanconi Anemia , Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Fanconi Anemia/genetics , Fanconi Anemia/pathology , Fanconi Anemia/therapy , Congenital Bone Marrow Failure Syndromes/complications , Core Binding Factor Alpha 2 Subunit/genetics , Induced Pluripotent Stem Cells/pathology , Myelodysplastic Syndromes/pathology , Mutation , Leukemia, Myeloid, Acute/pathology
10.
Am Soc Clin Oncol Educ Book ; 43: e390026, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37307513

ABSTRACT

Myeloid malignancies are a manifestation of clonal expansion of hematopoietic cells driven by somatic genetic alterations that may arise in a potential background of deleterious germline variants. As next-generation sequencing technology has become more accessible, real-world experience has allowed integration of molecular genomic data with morphology, immunophenotype, and conventional cytogenetics to refine our understanding of myeloid malignancies. This has prompted revisions in the classification and the prognostication schema of myeloid malignancies and germline predisposition to hematologic malignancies. This review provides an overview of significant changes in the recently published classifications of AML and myelodysplastic syndrome, emerging prognostic scoring, and the role of germline deleterious variants in predisposing to MDS and AML.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , High-Throughput Nucleotide Sequencing , Disease Susceptibility , Germ Cells
11.
Pediatr Blood Cancer ; : e30530, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37369986

ABSTRACT

BACKGROUND: The role of cytoreduction prior to hematopoietic cell transplant (HCT) for patients with pediatric myelodysplastic syndrome (MDS) and related disorders remains unclear. PROCEDURE: We performed a single-center retrospective analysis of pre-transplant disease management and subsequent HCT outcome for pediatric patients with MDS and related disorders who underwent HCT between 2010 and 2020. RESULTS: Total 62 patients (median age 11 years) with idiopathic MDS (n = 16), MDS secondary to an underlying germline condition (n = 11), secondary acute myeloid leukemia (n = 9), myeloproliferative neoplasms (n = 8), and treatment-related myeloid neoplasms (n = 18) received an allogeneic HCT. Cytoreduction prior to HCT was performed in 30/62 (48%) patients; this subset of patients had higher risk disease characteristics, including a higher blast count on presentation. In the overall cohort, use of cytoreduction before HCT was associated with higher rates of relapse (cumulative incidence of relapse 24 months post HCT: 48.1% [27.5%-66.1%]) for those who received cytoreduction versus 16.6% (5.9%-32.1%) for those who did not (p = .03). There was a trend toward decreased overall survival (OS) for those patients who received cytoreduction (24 months post HCT 57.1% vs. 75.3%, respectively; p = .06). OS for patients who received cytoreduction and attained measurable residual disease (MRD) negativity prior to HCT was superior compared to those with persistent disease (24 months post HCT 63.9% [36%-81.2%] vs. 33.3% [7.8%-62.3%], respectively; p = .04). CONCLUSION: Cytoreduction did not provide survival benefit in our overall cohort, but its increased use in children with higher risk disease impacted the analysis. Patients receiving cytoreduction and achieving MRD-negative status before HCT demonstrated improved OS compared to those with persistent disease.

12.
Am J Med Genet A ; 191(7): 1826-1835, 2023 07.
Article in English | MEDLINE | ID: mdl-37067177

ABSTRACT

The MECOM gene encodes multiple protein isoforms that are essential for hematopoietic stem cell self-renewal and maintenance. Germline MECOM variants have been associated with congenital thrombocytopenia, radioulnar synostosis and bone marrow failure; however, the phenotypic spectrum of MECOM-associated syndromes continues to expand and novel pathogenic variants continue to be identified. We describe eight unrelated patients who add to the previously known phenotypes and genetic defects of MECOM-associated syndromes. As each subject presented with unique MECOM variants, the series failed to demonstrate clear genotype-to-phenotype correlation but may suggest a role for additional modifiers that affect gene expression and subsequent phenotype. Recognition of the expanded hematologic and non-hematologic clinical features allows for rapid molecular diagnosis, early identification of life-threatening complications, and improved genetic counseling for families. A centralized international publicly accessible database to share annotated MECOM variants would advance their clinical interpretation and provide a foundation to perform functional MECOM studies.


Subject(s)
Bone Marrow Diseases , Hematologic Diseases , Pancytopenia , Humans , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics , Syndrome , Bone Marrow Failure Disorders , Transcription Factors/genetics , Phenotype , MDS1 and EVI1 Complex Locus Protein/genetics
13.
Blood ; 141(23): 2853-2866, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36952636

ABSTRACT

Biallelic germ line excision repair cross-complementing 6 like 2 (ERCC6L2) variants strongly predispose to bone marrow failure (BMF) and myeloid malignancies, characterized by somatic TP53-mutated clones and erythroid predominance. We present a series of 52 subjects (35 families) with ERCC6L2 biallelic germ line variants collected retrospectively from 11 centers globally, with a follow-up of 1165 person-years. At initial investigations, 32 individuals were diagnosed with BMF and 15 with a hematological malignancy (HM). The subjects presented with 19 different variants of ERCC6L2, and we identified a founder mutation, c.1424delT, in Finnish patients. The median age of the subjects at baseline was 18 years (range, 2-65 years). Changes in the complete blood count were mild despite severe bone marrow (BM) hypoplasia and somatic TP53 mutations, with no significant difference between subjects with or without HMs. Signs of progressive disease included increasing TP53 variant allele frequency, dysplasia in megakaryocytes and/or erythroid lineage, and erythroid predominance in the BM morphology. The median age at the onset of HM was 37.0 years (95% CI, 31.5-42.5; range, 12-65 years). The overall survival (OS) at 3 years was 95% (95% CI, 85-100) and 19% (95% CI, 0-39) for patients with BMF and HM, respectively. Patients with myelodysplastic syndrome or acute myeloid leukemia with mutated TP53 undergoing hematopoietic stem cell transplantation had a poor outcome with a 3-year OS of 28% (95% CI, 0-61). Our results demonstrated the importance of early recognition and active surveillance in patients with biallelic germ line ERCC6L2 variants.


Subject(s)
Anemia, Aplastic , Leukemia, Myeloid, Acute , Pancytopenia , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Retrospective Studies , Bone Marrow Failure Disorders , Leukemia, Myeloid, Acute/genetics , Anemia, Aplastic/genetics , DNA Repair , Acute Disease , DNA Helicases/genetics
14.
Transplant Cell Ther ; 29(1): 5-9, 2023 01.
Article in English | MEDLINE | ID: mdl-36283516

ABSTRACT

The Blood and Marrow Transplant Clinical Trials Network (BMT CTN), funded by the National Heart, Lung, and Blood Institute and the National Cancer Institute for more than 2 decades, is focused on improving the outcomes of hematopoietic cell transplantation (HCT) and other cellular therapies. It answered critical questions about conditioning intensity, donor choice, graft-versus-host disease prevention and treatment, and relapse mitigation strategies in a manner made possible by an extensive network of centers that have enrolled more than 16,000 patients to more than 55 trials. Although the BMT CTN has engaged patients in a variety of ways since its establishment, there is a growing realization that increasing that engagement and including caregivers offers many additional benefits to patients and investigators alike. Bringing the voice of patients and caregivers to clinical trial design is likely to enhance trial participation and reduce barriers to recruitment/retention. Unless clinical trials are designed with unique considerations of patients who have socioeconomic and access challenges, these populations will remain under-represented in HCT trials with limited generalizability of results. The next main frontier in our field is patient and caregiver access to high-quality HCT facilities coupled with the opportunity to participate in relevant, meaningful clinical research. In 2021, the BMT CTN Executive Committee convened a Patient and Caregiver Advocacy Task Force with a diverse membership representing a variety of stakeholders. The charge to the Task Force was to provide achievable recommendations for incorporating patient input at all steps of clinical trial development from initial concept to dissemination of results. Four focus areas were identified: (1) patient and caregiver input in research portfolio; (2) patient engagement in informed consent, protocol development and trial conduct; (3) communication to patients about trial progress, primary outcomes and secondary analyses; and (4) increased awareness among patients who may be considering BMT or cell therapy about BMT CTN trials. Three specific initiatives were considered as high priority by the Task Force: Fostering patient and caregiver engagement in development of the research portfolio and protocols; Developing communication plans for ongoing studies; and Simplifying the process for informed consent to make it more patient friendly. The BMT CTN has established a patient and caregiver advocacy committee that is tasked with developing concrete steps to incorporate recommendations of the BMT CTN Task Force in its current and future work. The BMT CTN recognizes patient and caregivers are valuable partners whose voice will enhance the conduct of impactful trials in BMT and cell therapy.


Subject(s)
Caregivers , Hematopoietic Stem Cell Transplantation , Humans , Bone Marrow , Bone Marrow Transplantation/methods , Hematopoietic Stem Cell Transplantation/adverse effects , Informed Consent , Clinical Trials as Topic
15.
Blood ; 141(13): 1513-1523, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36542827

ABSTRACT

Shwachman-Diamond syndrome (SDS) is an inherited multisystem ribosomopathy characterized by exocrine pancreatic deficiency, bone marrow failure, and predisposition to myeloid malignancies. The pathobiology of SDS results from impaired ribosomal maturation due to the deficiency of SBDS and the inability to evict the antiassociation factor eIF6 from the 60S ribosomal subunit. Clinical outcomes for patients with SDS who develop myeloid malignancies are extremely poor because of high treatment-related toxicities and a high rate of refractory disease/relapse even after allogeneic hematopoietic stem cell transplant (HSCT). Registry data indicate that outcomes are improved for patients with SDS who undergo routine bone marrow surveillance and receive an HSCT before developing an overt malignancy. However, the optimal approach to hematologic surveillance and the timing of HSCT for patients with SDS is not clearly established. Recent studies have elucidated distinct patterns of somatic blood mutations in patients with SDS that either alleviate the ribosome defect via somatic rescue (heterozygous EIF6 inactivation) or disrupt cellular checkpoints, resulting in increased leukemogenic potential (heterozygous TP53 inactivation). Genomic analysis revealed that most myeloid malignancies in patients with SDS have biallelic loss-of-function TP53 mutations. Single-cell DNA sequencing of SDS bone marrow samples can detect premalignant biallelic TP53-mutated clones before clinical diagnosis, suggesting that molecular surveillance may enhance the detection of incipient myeloid malignancies when HSCT may be most effective. Here, we review the clinical, genetic, and biologic features of SDS. In addition, we present evidence supporting the hematologic surveillance for patients with SDS that incorporates clinical, pathologic, and molecular data to risk stratify patients and prioritize transplant evaluation for patients with SDS with high-risk features.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Lipomatosis , Myeloproliferative Disorders , Humans , Shwachman-Diamond Syndrome , Bone Marrow Diseases/genetics , Bone Marrow Diseases/therapy , Bone Marrow Diseases/diagnosis , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/therapy , Lipomatosis/genetics , Lipomatosis/therapy , Neoplasm Recurrence, Local , Disease Susceptibility
16.
Virchows Arch ; 482(1): 113-130, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36445482

ABSTRACT

Updating the classification of hematologic neoplasia with germline predisposition, pediatric myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML) is critical for diagnosis, therapy, research, and clinical trials. Advances in next-generation sequencing technology have led to the identification of an expanding group of genes that predispose to the development of hematolymphoid neoplasia when mutated in germline configuration and inherited. This review encompasses recent advances in the classification of myeloid and lymphoblastic neoplasia with germline predisposition summarizing important genetic and phenotypic information, relevant laboratory testing, and pathologic bone marrow features. Genes are organized into three major categories including (1) those that are not associated with constitutional disorder and include CEBPA, DDX41, and TP53; (2) those associated with thrombocytopenia or platelet dysfunction including RUNX1, ANKRD26, and ETV6; and (3) those associated with constitutional disorders affecting multiple organ systems including GATA2, SAMD9, and SAMD9L, inherited genetic mutations associated with classic bone marrow failure syndromes and JMML, and Down syndrome. A provisional category of germline predisposition genes is created to recognize genes with growing evidence that may be formally included in future revised classifications as substantial supporting data emerges. We also detail advances in the classification of pediatric myelodysplastic syndrome (MDS), expanding the definition of refractory cytopenia of childhood (RCC) to include early manifestation of MDS in patients with germline predisposition. Finally, updates in the classification of juvenile myelomonocytic leukemia are presented which genetically define JMML as a myeloproliferative/myelodysplastic disease harboring canonical RAS pathway mutations. Diseases with features overlapping with JMML that do not carry RAS pathway mutations are classified as JMML-like. The review is based on the International Consensus Classification (ICC) of Myeloid and Lymphoid Neoplasms as reported by Arber et al. (Blood 140(11):1200-1228, 2022).


Subject(s)
Hematologic Neoplasms , Leukemia, Myelomonocytic, Juvenile , Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , Child , Leukemia, Myelomonocytic, Juvenile/genetics , Consensus , Genetic Predisposition to Disease , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/diagnosis , Germ-Line Mutation , Intracellular Signaling Peptides and Proteins
17.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36219480

ABSTRACT

Acquired aplastic anemia (AA) is caused by autoreactive T cell-mediated destruction of early hematopoietic cells. Somatic loss of human leukocyte antigen (HLA) class I alleles was identified as a mechanism of immune escape in surviving hematopoietic cells of some patients with AA. However, pathogenicity, structural characteristics, and clinical impact of specific HLA alleles in AA remain poorly understood. Here, we evaluated somatic HLA loss in 505 patients with AA from 2 multi-institutional cohorts. Using a combination of HLA mutation frequencies, peptide-binding structures, and association with AA in an independent cohort of 6,323 patients from the National Marrow Donor Program, we identified 19 AA risk alleles and 12 non-risk alleles and established a potentially novel AA HLA pathogenicity stratification. Our results define pathogenicity for the majority of common HLA-A/B alleles across diverse populations. Our study demonstrates that HLA alleles confer different risks of developing AA, but once AA develops, specific alleles are not associated with response to immunosuppression or transplant outcomes. However, higher pathogenicity alleles, particularly HLA-B*14:02, are associated with higher rates of clonal evolution in adult patients with AA. Our study provides insights into the immune pathogenesis of AA, opening the door to future autoantigen identification and improved understanding of clonal evolution in AA.


Subject(s)
Anemia, Aplastic , Adult , Humans , Anemia, Aplastic/genetics , Anemia, Aplastic/pathology , Alleles , Histocompatibility Antigens Class I/genetics , HLA-B Antigens/genetics , HLA Antigens/genetics
19.
Sci Immunol ; 7(75): eabi4611, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36112693

ABSTRACT

Dipeptidyl peptidase 9 (DPP9) is a direct inhibitor of NLRP1, but how it affects inflammasome regulation in vivo is not yet established. Here, we report three families with immune-associated defects, poor growth, pancytopenia, and skin pigmentation abnormalities that segregate with biallelic DPP9 rare variants. Using patient-derived primary cells and biochemical assays, these variants were shown to behave as hypomorphic or knockout alleles that failed to repress NLRP1. The removal of a single copy of Nlrp1a/b/c, Asc, Gsdmd, or Il-1r, but not Il-18, was sufficient to rescue the lethality of Dpp9 mutant neonates in mice. Similarly, dpp9 deficiency was partially rescued by the inactivation of asc, an obligate downstream adapter of the NLRP1 inflammasome, in zebrafish. These experiments suggest that the deleterious consequences of DPP9 deficiency were mostly driven by the aberrant activation of the canonical NLRP1 inflammasome and IL-1ß signaling. Collectively, our results delineate a Mendelian disorder of DPP9 deficiency driven by increased NLRP1 activity as demonstrated in patient cells and in two animal models of the disease.


Subject(s)
Apoptosis Regulatory Proteins , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inflammasomes , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , Interleukin-1/metabolism , NLR Proteins/genetics , Zebrafish
20.
Blood ; 140(21): 2228-2247, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36130297

ABSTRACT

Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Neoplasms , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Genomics , Neoplasms/genetics , Hematologic Neoplasms/genetics , Clinical Decision-Making
SELECTION OF CITATIONS
SEARCH DETAIL
...