Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(47): 26849-26856, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-35541076

ABSTRACT

The effects of temperature and background counterions on ion-exchange selectivity for alkali metal ions and tetraalkylammonium ions on strongly acidic cation-exchange resins have been investigated using superheated water ion-exchange chromatography (SW-IEC). We have found out that alkali metal ions show reversal in the order of the distribution coefficient (K D), from Li+ < Na+ < K+ < Rb+ in water at ordinary temperature to Rb+ < K+ < Na+ < Li+ in superheated water, when a relatively large cation such as cesium ion is used as the background counterion. The effect of counterion on the ion-exchange selectivity is enhanced with the ion-exchange resins of higher ion-exchange capacity and cross-linking degree. Tetraalkylammonium ions chosen as model ions for poorly hydrated ions also exhibit reversal in the order of K D at around 430 K in superheated water. However, the effect of the nature of alkali metal counterions on the change in K D values of tetraalkylammonium ions is rather small compared with the effect on the K D of alkali metal ions. These results are attributed to the change in local hydration structures of the ions in the ion-exchange resin due to dehydration of alkali metal ions enhanced by interionic contacts of the analyte ion with the coexisting counterion and lower hydration energy of the ions at elevated temperatures. Although it has been considered that temperature is not effective at changing the ion-exchange separation selectivity, significant selectivity changes can be achieved by SW-IEC.

2.
Anal Chem ; 85(2): 978-84, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23215029

ABSTRACT

Multistep pH-peak-focusing countercurrent chromatography was developed for separation and enrichment of rare earth metal ions using a polyethylene glycol-Na(2)SO(4) aqueous two phase system (ATPS) and pH stepwise gradient elution. Metal ions in a sample solution are chromatographically extracted in a basic stationary phase (polymer-rich phase of the ATPS) containing a complexation ligand such as acetylacetone at the top of the countercurrent chromatography (CCC) column. After the sample solution is introduced, the mobile phases of which the pH values have been adjusted with buffer reagents are delivered into the column by stepwise gradient elution in order of decreasing pH. Each metal ion is concentrated at a pH border formed between the zones of different pH in the CCC column through extraction with a complexing agent into the stationary phase at the front side of the border (basic region) and back extraction into the mobile phase at the back side of the border (acidic region), moving toward the outlet of the column with the pH border. Mutual separations of La(III), Ce(III), Nd(III), Yb(III), and Sc(III) were achieved by the present method using five step pH gradient elution, and each rare earth metal ion was effectively enriched at each of the five pH borders. The mechanism for formation of pH profile of the column effluent and the potential of this technique for preparative scale separation are also discussed.


Subject(s)
Lanthanoid Series Elements/isolation & purification , Polyethylene Glycols/chemistry , Sulfates/chemistry , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Water/chemistry
3.
Anal Chem ; 81(19): 8025-32, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19743878

ABSTRACT

Cation-exchange selectivity for alkali and alkaline-earth metal ions and tetraalkylammonium ions on a strongly acidic sulfonic acid cation-exchange resin has been investigated in the temperature range of 40-175 degrees C using superheated water chromatography. Dependence of the distribution coefficient (ln KD) on the reciprocal of temperature (1/T) is not linear for most of the ions studied, and the selectivity coefficient for a pair of alkali metal ions or that of alkaline-earth metal ions approaches unity as temperature increases. On the other hand, the retention order of tetraalkylammonium ions is reversed at 160 degrees C or above when eluted with Na2SO4 aqueous solution and the larger ions are eluted faster than the smaller ones contrary to the retention order obtained at ambient temperature. The change in ion-exchange selectivity with temperature observed with superheated water chromatography has been discussed on the basis of the effect of temperature on hydration of the ions and specific adsorption or distribution of ionic species between the external solution and ion-exchange resin. In superheated water, the electrostatic interaction or association of the ions with the fixed ion becomes a predominant mechanism resulting in different separation selectivity from that obtained at ambient temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...