Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 4(11): 2509-2520, 2022 May 31.
Article in English | MEDLINE | ID: mdl-36134133

ABSTRACT

Reducing the thermal conductivity (κ) of mesoporous N-doped titania (TiO2) is crucial for the development of TiO2-based materials that exhibit excellent electronic, photochemical, and thermoelectric properties. Mesopores can contribute to the reduction of κ via phonon scattering, and the scattering effect due to the randomness of crystal interfaces should be significantly reduced to clarify the role of mesopores in reducing thermal conductivity. Highly ordered mesoporous N-doped TiO2 comprising large crystallites was prepared with silica colloidal crystals as a template into which a Ti source was introduced, followed by calcination with urea. N-doped samples comprising large crystallites exhibiting random mesopores were also prepared and used for the investigation of the effects of the shape and arrangement of the mesopore on phonon scattering. The mesostructures of the two separately prepared N-doped TiO2 samples were retained after sintering at 873 K and 80 MPa to fabricate pellets. Furthermore, the effective suppression of the long mean-free-path phonon conduction by the thin pore walls at a nanometer scale thickness significantly reduced the thermal conductivities of both samples. The presence of ordered mesopores further contributed to the reduction of κ, which was probably due to the enhanced contribution of the backscattering of phonons caused by ordered pore wall surfaces.

2.
Chem Asian J ; 13(24): 3935-3941, 2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30398026

ABSTRACT

Ordered mesoporous Au was prepared using double gyroid (cubic Ia-3d) mesoporous silica KIT-6 as a template. The Au frameworks were formed within the template via a seed-mediated growth process. Au nanoparticles were initially prepared as seeds within the mesopores, and subsequently, they were grown under mild and controlled reducing conditions. The transmission electron micrographs and scanning electron micrographs of mesoporous Au after the removal of the template revealed the formation of mesoporous Au replicas. The small-angle X-ray scattering pattern of mesoporous Au reveals that the obtained mesoporous Au has a cubic I41 32 mesostructure, which is different from that of the original template, implying that Au was deposited within only one mesochannel of the two interconnected ones. The seed-mediated growth process is a key factor in the successful formation of ordered mesoporous Au using a mesoporous silica template. Our preparative method can serve as a guide for further development of synthetic and materials chemistry of mesoporous Au.

3.
Chemistry ; 21(37): 13073-9, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26216465

ABSTRACT

Highly ordered mesoporous niobium-doped TiO2 with a single-crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb-doped TiO2 . The XPS measurements of Nb-doped TiO2 showed the presence of Nb(5+) and correspondingly Ti(3+) . With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate-like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...