Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(50): 58539-58547, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38055892

ABSTRACT

Organic-inorganic hybrid perovskite solar cells have attracted much attention as important next-generation solar cells. Their solar cell performance is known to change during operation, but the root cause of the instability remains unclear. This report describes an investigation using electron spin resonance (ESR) to evaluate an improvement mechanism for the open-circuit voltage, VOC, of inverted perovskite solar cells at the initial stage of device operation. The ESR study revealed electron transfer at the interface from the perovskite layer to the hole-transport layer not only under dark conditions but also under light irradiation, where electrons are subsequently trapped in the hole-transport layer. An electron barrier is enhanced at the perovskite/hole-transport-layer interface, improving field-effect passivation at the interface. Thereby, the interface recombination velocity is reduced, and thus the VOC improves. These findings are crucially important for elucidating the mechanisms of device performance changes under operation. They reveal a relation between charge transfer and performance improvement, which is valuable for the further development of efficient perovskite solar cells.

2.
Phys Rev Lett ; 126(7): 077401, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33666485

ABSTRACT

We investigate the impact of phonon excitations on the photoexcited carrier dynamics in a lead-halide perovskite CH_{3}NH_{3}PbI_{3}, which hosts unique low-energy phonons that can be directly excited by terahertz pulses. Our time-resolved photoluminescence measurements reveal that strong terahertz excitation prolongs the cooling time of hot carriers, providing direct evidence for the hot-phonon bottleneck effect. In contrast to the previous studies where phonons are treated as a passive heat bath, our results demonstrate that phonon excitation can significantly perturb the carrier relaxation dynamics in halide perovskites through the coupling between transverse- and longitudinal-optical phonons.

3.
Angew Chem Int Ed Engl ; 58(28): 9389-9393, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31033135

ABSTRACT

A high-purity methylammonium lead iodide complex with intercalated dimethylformamide (DMF) molecules, CH3 NH3 PbI3 ⋅DMF, is introduced as an effective precursor material for fabricating high-quality solution-processed perovskite layers. Spin-coated films of the solvent-intercalated complex dissolved in pure dimethyl sulfoxide (DMSO) yielded thick, dense perovskite layers after thermal annealing. The low volatility of the pure DMSO solvent extended the allowable time for low-speed spin programs and considerably relaxed the precision needed for the antisolvent addition step. An optimized, reliable fabrication method was devised to take advantage of this extended process window and resulted in highly consistent performance of perovskite solar cell devices, with up to 19.8 % power-conversion efficiency (PCE). The optimized method was also used to fabricate a 22.0 cm2 , eight-cell module with 14.2 % PCE (active area) and 8.64 V output (1.08 V/cell).

4.
Chemistry ; 25(27): 6741-6752, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30805960

ABSTRACT

A series of two-dimensionally expanded azulene-core-based π systems have been synthesized with different alkyl chain lengths in the alkoxy moieties connected to the partially oxygen-bridged triarylamine skeletons. The thermal, photophysical, and electronic properties of each compound were evaluated to determine the influence of the alkyl chain length on their effectiveness as hole-transporting materials (HTMs) in perovskite solar cells (PSCs). All the synthesized molecules showed promising material properties, including high solubility, the formation of flat and amorphous films, and optimal alignment of energy levels with perovskites. In particular, the derivatives with methyl and n-butyl in the side chains retained amorphous stability up to 233 and 159 °C, respectively. Such short alkoxy chains also resulted in improved electrical device properties. The PSC device fabricated with the HTM with n-butyl side chains showed the best performance with a power conversion efficiency of 18.9 %, which compares favorably with that of spiro-OMeTAD-based PSCs (spiro-OMeTAD=2,2',7,7'-tetrakis[N,N-bis(p-methoxyphenyl)amino]-9,9'-spirobifluorene).

5.
ACS Appl Mater Interfaces ; 9(23): 19988-19997, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28553705

ABSTRACT

Herein, the open-circuit voltage (VOC) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of VOC to discuss the difference in the primary loss mechanism of VOC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of VOC in both solar cells are further discussed on the basis of the experimental data.

6.
J Phys Chem Lett ; 8(5): 954-960, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28185455

ABSTRACT

Organic-inorganic hybrid perovskite solar cells are attracting much attention due to their excellent photovoltaic properties. In these multilayered structures, the device performance is determined by complicated carrier dynamics. Here, we studied photocarrier recombination and injection dynamics in CH3NH3PbI3 perovskite solar cells using time-resolved photoluminescence (PL) and photocurrent (PC) measurements. It is found that a peculiar slowdown in the PL decay time constants of the perovskite layer occurs for higher excitation powers, followed by a decrease of the external quantum efficiency for PC. This indicates that a carrier-injection bottleneck exists at the heterojunction interfaces, which limits the photovoltaic performance of the device in concentrator applications. We conclude that the carrier-injection rate is sensitive to the photogenerated carrier density, and the carrier-injection bottleneck strongly enhances recombination losses of photocarriers in the perovskite layer at high excitation conditions. The physical origin of the bottleneck is discussed based on the result of numerical simulations.

7.
J Phys Chem Lett ; 7(16): 3186-91, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27482607

ABSTRACT

Charge carrier dynamics in perovskite CH3NH3PbI3 solar cells were studied by means of microscopic photoluminescence (PL) and photocurrent (PC) imaging spectroscopy. The PL intensity, PL lifetime, and PC intensity varied spatially on the order of several tens of micrometers. Simultaneous PL and PC image measurements revealed a positive correlation between the PL intensity and PL lifetime, and a negative correlation between PL and PC intensities. These correlations were due to the competition between photocarrier injection from the CH3NH3PbI3 layer into the charge transport layer and photocarrier recombination within the CH3NH3PbI3 layer. Furthermore, we found that the decrease in the carrier injection efficiency under prolonged light illumination leads to a reduction in PC, resulting in light-induced degradation of solar cell devices. Our findings provide important insights for understanding carrier injection at the interface and light-induced degradation in perovskite solar cells.

8.
Opt Express ; 24(10): A917-24, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409964

ABSTRACT

We investigate the performance degradation mechanism of CH3NH3PbI3 perovskite solar cells under bias voltage in air and nitrogen atmospheres using photoluminescence and electroluminescence techniques. When applying forward bias, the power conversion efficiency of the solar cells decreased significantly in air, but showed no degradation in nitrogen atmosphere. Time-resolved photoluminescence measurements on these devices revealed that the application of forward bias in air accelerates the generation of non-radiative recombination centers in the perovskite layer buried in the device. We found a negative correlation between the electroluminescence intensity and the injected current intensity in air. The irreversible change of the perovskite grain surface in air initiates the degradation of the perovskite solar cells.

9.
J Phys Chem Lett ; 7(11): 1972-7, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27157358

ABSTRACT

The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

10.
J Am Chem Soc ; 137(50): 15656-9, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26651163

ABSTRACT

Two-dimensionally expanded π-systems, consisting of partially oxygen-bridged triarylamine skeletons that are connected to an azulene (1-3) or biphenyl core (4), were synthesized and characterized. When tetra-substituted azulene 1 was used as a hole-transporting material (HTM) in perovskite solar cells, the observed performance (power conversion efficiency = 16.5%) was found to be superior to that of the current HTM standard Spiro-OMeTAD. A comparison of the hole mobility, the ability to control the HOMO and LUMO levels, and the hole-collection efficiency at the perovskite/HTM interface in 1 with reference compounds (2-4 and Spiro-OMeTAD) led to the elucidation of key factors required for HTMs to act efficiently in perovskite solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...