Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 22(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34681630

ABSTRACT

Many organisms reductively assimilate selenite to synthesize selenoprotein. Although the thioredoxin system, consisting of thioredoxin 1 (TrxA) and thioredoxin reductase with NADPH, can reduce selenite and is considered to facilitate selenite assimilation, the detailed mechanism remains obscure. Here, we show that selenite was reduced by the thioredoxin system from Pseudomonas stutzeri only in the presence of the TrxA (PsTrxA), and this system was specific to selenite among the oxyanions examined. Mutational analysis revealed that Cys33 and Cys36 residues in PsTrxA are important for selenite reduction. Free thiol-labeling assays suggested that Cys33 is more reactive than Cys36. Mass spectrometry analysis suggested that PsTrxA reduces selenite via PsTrxA-SeO intermediate formation. Furthermore, an in vivo formate dehydrogenase activity assay in Escherichia coli with a gene disruption suggested that TrxA is important for selenoprotein biosynthesis. The introduction of PsTrxA complemented the effects of TrxA disruption in E. coli cells, only when PsTrxA contained Cys33 and Cys36. Based on these results, we proposed the early steps of the link between selenite and selenoprotein biosynthesis via the formation of TrxA-selenium complexes.


Subject(s)
Bacterial Proteins/metabolism , Pseudomonas stutzeri/metabolism , Selenious Acid/metabolism , Selenoproteins/biosynthesis , Thioredoxins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Formate Dehydrogenases/metabolism , Oxidation-Reduction , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Selenious Acid/chemistry , Selenoproteins/chemistry , Thioredoxins/chemistry , Thioredoxins/genetics
2.
Article in English | MEDLINE | ID: mdl-25569898

ABSTRACT

Sleep monitoring systems that can be used in daily life for the assessment of personal health and early detection of diseases are needed. To this end, we are developing a system for unconstrained measurement of the lying posture, respiration and heartbeat of a person on a soft rubber-based tactile sensor sheet. The respiration and heartbeat signals can be detected from only particular locations on the tactile sensor, and the locations depend on the lying location and posture of the measured person. In this paper, we describe how to determine the measurement locations on the sensor. We also report a realtime program that detects the respiration rate and the heart rate by using this method.


Subject(s)
Beds , Heart Rate/physiology , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Posture , Respiration , Touch/physiology , Fourier Analysis , Humans , Pressure , Respiratory Rate , Signal-To-Noise Ratio , Sleep/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...