Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Expert Opin Ther Targets ; : 1-12, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714500

ABSTRACT

INTRODUCTION: Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED: We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION: Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.

2.
Viruses ; 15(12)2023 12 13.
Article in English | MEDLINE | ID: mdl-38140657

ABSTRACT

St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne Flavivirus that may cause severe neurological disease in humans and other animals. There are no specific treatments against SLEV infection or disease approved for human use, and drug repurposing may represent an opportunity to accelerate the development of treatments against SLEV. Here we present a scalable, medium-throughput phenotypic cell culture-based screening assay on Vero CCL81 cells to identify bioactive compounds that could be repurposed against SLEV infection. We screened eighty compounds from the Medicines for Malaria Venture (MMV) COVID Box library to identify nine (11%) compounds that protected cell cultures from SLEV-induced cytopathic effects, with low- to mid-micromolar potencies. We validated six hit compounds using viral plaque-forming assays to find that the compounds ABT-239, Amiodarone, Fluphenazine, Posaconazole, Triparanol, and Vidofludimus presented varied levels of antiviral activity and selectivity depending on the mammalian cell type used for testing. Importantly, we identified and validated the antiviral activity of the anti-flavivirus nucleoside analog 7DMA against SLEV. Triparanol and Fluphenazine reduced infectious viral loads in both Vero CCL81 and HBEC-5i cell cultures and, similar to the other validated compounds, are likely to exert antiviral activity through a molecular target in the host.


Subject(s)
Encephalitis, St. Louis , Flavivirus , Malaria , Triparanol , Animals , Humans , Encephalitis Virus, St. Louis , Encephalitis, St. Louis/diagnosis , Fluphenazine , Antiviral Agents/pharmacology , Mammals
3.
Diagnostics (Basel) ; 13(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37189545

ABSTRACT

Zika virus (ZIKV) diagnosis is currently performed through an invasive, painful, and costly procedure using molecular biology. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for ZIKV diagnosis is of great relevance. It is critical to prepare a global strategy for the next ZIKV outbreak given its devastating consequences, particularly in pregnant women. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy has been used to discriminate systemic diseases using saliva; however, the salivary diagnostic application in viral diseases is unknown. To test this hypothesis, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with ZIKV (50 µL,105 FFU, n = 7) or vehicle (50 µL, n = 8). Saliva samples were collected on day three (due to the peak of viremia) and the spleen was also harvested. Changes in the salivary spectral profile were analyzed by Student's t test (p < 0.05), multivariate analysis, and the diagnostic capacity by ROC curve. ZIKV infection was confirmed by real-time PCR of the spleen sample. The infrared spectroscopy coupled with univariate analysis suggested the vibrational mode at 1547 cm-1 as a potential candidate to discriminate ZIKV and control salivary samples. Three PCs explained 93.2% of the cumulative variance in PCA analysis and the spectrochemical analysis with LDA achieved an accuracy of 93.3%, with a specificity of 87.5% and sensitivity of 100%. The LDA-SVM analysis showed 100% discrimination between both classes. Our results suggest that ATR-FTIR applied to saliva might have high accuracy in ZIKV diagnosis with potential as a non-invasive and cost-effective diagnostic tool.

4.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108665

ABSTRACT

Zika virus (ZIKV) has re-emerged in recent decades, leading to outbreaks of Zika fever in Africa, Asia, and Central and South America. Despite its drastic re-emergence and clinical impact, no vaccines or antiviral compounds are available to prevent or control ZIKV infection. This study evaluated the potential antiviral activity of quercetin hydrate against ZIKV infection and demonstrated that this substance inhibits virus particle production in A549 and Vero cells under different treatment conditions. In vitro antiviral activity was long-lasting (still observed 72 h post-infection), suggesting that quercetin hydrate affects multiple rounds of ZIKV replication. Molecular docking indicates that quercetin hydrate can efficiently interact with the specific allosteric binding site cavity of the NS2B-NS3 proteases and NS1-dimer. These results identify quercetin as a potential compound to combat ZIKV infection in vitro.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Antiviral Agents/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Vero Cells , Molecular Docking Simulation , Virus Replication
5.
Int J Biol Macromol ; 241: 124519, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37085072

ABSTRACT

Enterovirus A71 (EVA71) belongs to the Picornaviridae family and is the main etiological agent of hand, foot, and mouth disease (HFMD). There is no approved antiviral against EVA71, and therefore the search for novel anti-EVA71 therapeutics is essential. In this context, the antiviral activity of proteins isolated from snake venoms has been reported against a range of viruses. Here, the proteins CM10 and CM14 isolated from Bothrops moojeni, and Crotamin and PLA2CB isolated from Crotalus durissus terrificus were investigated for their antiviral activity against EVA71 infection. CM14 and Crotamin possessed a selective index (SI) of 170.8 and 120.4, respectively, while CM10 and PLA2CB had an SI of 67.4 and 12.5, respectively. CM14 inhibited all steps of viral replication (protective effect: 76 %; virucidal: 99 %; and post-entry: 99 %). Similarly, Crotamin inhibited up to 99 % of three steps. In contrast, CM10 and PLA2CB impaired one or two steps of EVA71 replication, respectively. Further dose-response assays using increasing titres of EVA71 were performed and CM14 and Crotamin retained functionality with high concentrations of EVA71 (up to 1000 TCID50). These data demonstrate that proteins isolated from snake venom are potent inhibitors of EVA71 and could be used as scaffolds for future development of novel antivirals.


Subject(s)
Crotalid Venoms , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Animals , Brazil , Proteins , Antiviral Agents/pharmacology , Antigens, Viral , Snakes , Phospholipases A2
6.
Sci Rep ; 12(1): 18500, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323732

ABSTRACT

The nucleocapsid (N) protein plays critical roles in coronavirus genome transcription and packaging, representing a key target for the development of novel antivirals, and for which structural information on ligand binding is scarce. We used a novel fluorescence polarization assay to identify small molecules that disrupt the binding of the N protein to a target RNA derived from the SARS-CoV-2 genome packaging signal. Several phenolic compounds, including L-chicoric acid (CA), were identified as high-affinity N-protein ligands. The binding of CA to the N protein was confirmed by isothermal titration calorimetry, 1H-STD and 15N-HSQC NMR, and by the crystal structure of CA bound to the N protein C-terminal domain (CTD), further revealing a new modulatory site in the SARS-CoV-2 N protein. Moreover, CA reduced SARS-CoV-2 replication in cell cultures. These data thus open venues for the development of new antivirals targeting the N protein, an essential and yet underexplored coronavirus target.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ligands , Nucleocapsid Proteins/genetics , RNA/metabolism , Antiviral Agents/pharmacology , Protein Binding
7.
Photodiagnosis Photodyn Ther ; 39: 103015, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35843562

ABSTRACT

Ultraviolet (UV) light can inactivate SARS-CoV-2. However, the practicality of UV light is limited by the carcinogenic potential of mercury vapor-based UV lamps. Recent advances in the development of krypton chlorine (KrCl) excimer lamps hold promise, as these emit a shorter peak wavelength (222 nm), which is highly absorbed by the skin's stratum corneum and can filter out higher wavelengths. In this sense, UV 222 nm irradiation for the inactivation of virus particles in the air and surfaces is a potentially safer option as a germicidal technology. However, these same physical properties make it harder to reach microbes present in complex solutions, such as saliva, a critical source of SARS-CoV-2 transmission. We provide the first evaluation for using a commercial filtered KrCl excimer light source to inactivate SARS-CoV-2 in saliva spread on a surface. A conventional germicidal lamp (UV 254 nm) was also evaluated under the same condition. Using plaque-forming units (PFU) and Median Tissue Culture Infectious Dose (TCID50) per milliliter we found that 99.99% viral clearance (LD99.99) was obtained with 106.3 mJ/cm2 of UV 222 nm for virus in DMEM and 2417 mJ/cm2 for virus in saliva. Additionally, our results showed that the UV 254 nm had a greater capacity to inactivate the virus in both vehicles. Effective (after discounting light absorption) LD99.99 of UV 222 nm on the virus in saliva was ∼30 times higher than the value obtained with virus in saline solution (PBS), we speculated that saliva might be protecting the virus from surface irradiation in ways other than just by intensity attenuation of UV 222 nm. Due to differences between UV 222/254 nm capacities to interact and be absorbed by molecules in complex solutions, a higher dose of 222 nm will be necessary to reduce viral load in surfaces with contaminated saliva.


Subject(s)
COVID-19 , Photochemotherapy , Disinfection/methods , Humans , Photochemotherapy/methods , SARS-CoV-2 , Saliva , Ultraviolet Rays
8.
Virulence ; 13(1): 1031-1048, 2022 12.
Article in English | MEDLINE | ID: mdl-35734825

ABSTRACT

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , HEK293 Cells , Humans , Lipids , Mice , Pandemics , Quality of Life , Vero Cells , Virus Replication
9.
Access Microbiol ; 4(3): 000326, 2022.
Article in English | MEDLINE | ID: mdl-35693474

ABSTRACT

Hepatitis C virus (HCV) is responsible for more than 180 million infections worldwide, and about 80 % of infections are reported in Low and Middle-income countries (LMICs). Therapy is based on the administration of interferon (INF), ribavirin (RBV) or more recently Direct-Acting Antivirals (DAAs). However, amino acid substitutions associated with resistance (RAS) have been extensively described and can contribute to treatment failure, and diagnosis of RAS requires considerable infrastructure, not always locally available. Dried serum spots (DSS) sampling is an alternative specimen collection method, which embeds drops of serum onto filter paper to be transported by posting to a centralized laboratory. Here, we assessed feasibility of genotypic analysis of HCV from DSS in a cohort of 80 patients from São Paulo state Brazil. HCV RNA was detected on DSS specimens in 83 % of samples of HCV infected patients. HCV genotypes 1a, 1b, 2a, 2c and 3a were determined using the sequence of the palm domain of NS5B region, and RAS C316N/Y, Q309R and V321I were identified in HCV 1b samples. Concerning therapy outcome, 75 % of the patients who used INF +RBV as a previous protocol of treatment did not respond to DAAs, and 25 % were end-of-treatment responders. It suggests that therapy with INF plus RBV may contribute for non-response to a second therapeutic protocol with DAAs. One patient that presented RAS (V321I) was classified as non-responder, and combination of RAS C316N and Q309R does not necessarily imply in resistance to treatment in this cohort of patients. Data presented herein highlights the relevance of studying circulating variants for a better understanding of HCV variability and resistance to the therapy. Furthermore, the feasibility of carrying out genotyping and RAS phenotyping analysis by using DSS card for the potential of informing future treatment interventions could be relevant to overcome the limitations of processing samples in several location worldwide, especially in LMICs.

10.
Sci Rep ; 11(1): 8717, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888774

ABSTRACT

Chikungunya virus (CHIKV) is the etiologic agent of Chikungunya fever, a globally spreading mosquito-borne disease. There is no approved antiviral or vaccine against CHIKV, highlighting an urgent need for novel therapies. In this context, snake venom proteins have demonstrated antiviral activity against several viruses, including arboviruses which are relevant to public health. In particular, the phospholipase A2CB (PLA2CB), a protein isolated from the venom of Crotalus durissus terrificus was previously shown to possess anti-inflammatory, antiparasitic, antibacterial and antiviral activities. In this study, we investigated the multiple effects of PLA2CB on the CHIKV replicative cycle in BHK-21 cells using CHIKV-nanoluc, a marker virus carrying nanoluciferase reporter. The results demonstrated that PLA2CB possess a strong anti-CHIKV activity with a selectivity index of 128. We identified that PLA2CB treatment protected cells against CHIKV infection, strongly impairing virus entry by reducing adsorption and post-attachment stages. Moreover, PLA2CB presented a modest yet significant activity towards post-entry stages of CHIKV replicative cycle. Molecular docking calculations indicated that PLA2CB may interact with CHIKV glycoproteins, mainly with E1 through hydrophobic interactions. In addition, infrared spectroscopy measurements indicated interactions of PLA2CB and CHIKV glycoproteins, corroborating with data from in silico analyses. Collectively, this data demonstrated the multiple antiviral effects of PLA2CB on the CHIKV replicative cycle, and suggest that PLA2CB interacts with CHIKV glycoproteins and that this interaction blocks binding of CHIKV virions to the host cells.


Subject(s)
Chikungunya virus/drug effects , Crotalid Venoms/enzymology , Glycoproteins/metabolism , Phospholipases A2/pharmacology , Virus Internalization/drug effects , Animals , Cell Line , Chikungunya virus/physiology , Cricetinae , Crotalus , Molecular Docking Simulation , Phospholipases A2/isolation & purification , Phospholipases A2/metabolism , Protein Binding , Virus Replication/drug effects
11.
J Clin Virol ; 129: 104483, 2020 08.
Article in English | MEDLINE | ID: mdl-32544862

ABSTRACT

BACKGROUND: Effective drug regimens for the treatment of hepatitis B virus (HBV) infections are essential to achieve the World Health Organisation commitment to eliminate viral hepatitis by 2030. Lamivudine (3TC) is widely used in countries with high levels of chronic HBV, however resistance has been shown to occur in up to 50 % of individuals receiving continuous monotherapy for 4 years. Telbivudine (LdT) is now more commonly used in place of lamivudine but is ineffective against 3TC-resistant HBV. Genotyping and identification of resistanceassociated substitutions (RAS) is not practical in many locations. OBJECTIVES: A novel assay was designed to enable HBV genotyping and characterisation of resistance mutations directly from serum samples stored on filter paper, using Sanger and MinION sequencing. STUDY DESIGN: The assay was applied to a cohort of 30 samples stored on filter paper for several years with HBV viral loads ranging from 8.2 × 108 to 635 IU/mL. A set of 6 high-titre samples were used in a proof-of-principle study using the MinION sequencer. RESULTS: The assay allowed determination of HBV genotype and elucidation of RAS down to 600 IU/mL using a 550bp amplicon. Sequencing of a 1.2 kb amplicon using a MinION sequencer gave results consistent with Sanger sequencing and allowed the identification of minor populations of variants. CONCLUSIONS: We present two approaches for reliable HBV sequencing and RAS identification using methods suitable for resource-limited environments. This is the first demonstration of extraction-free DNA sequencing direct from DSS using MinION and these workflows are adaptable to the investigation of other DNA viruses.


Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Hepatitis B , Nanopore Sequencing , Antiviral Agents/therapeutic use , DNA, Viral , Drug Resistance, Viral/drug effects , Hepatitis B/drug therapy , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , Humans , Lamivudine/therapeutic use , Mutation , Pharmaceutical Preparations , Polymerase Chain Reaction
12.
Acta Trop ; 207: 105490, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32333884

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-transmitted virus of special concern as it causes Chikungunya fever, characterized by an acute febrile illness, rash, and arthralgia that can progress to chronic and debilitating arthritic symptoms. The effects of climate change on the geographic distribution of the mosquito vector has the potential to expose more of the globe to this virus. No antiviral agents or vaccines are currently available against CHIKV infection and the development of novel therapies that may lead to a future treatment is therefore necessary. In this context, the ADP-ribose binding site of the CHIKV nsP3 macro domain has been reported as a potential target for the development of antivirals. Mutations in the ADP-ribose binding site demonstrated decreased viral replication in cell culture and reduced virulence. In this study, 48,750 small molecules were screened in silico for their ability to bind to the ADP-ribose binding site of the CHIKV nsP3 macro domain. From this in silico analysis, 12 molecules were selected for in vitro analysis using a CHIKV subgenomic replicon in Huh-7 cells. Cell viability and CHIKV replication were evaluated and molecules C5 and C13 demonstrated 53 and 66% inhibition of CHIKV replication, respectively. By using a CHIKV-Dual luciferase replicon contain two reporter genes, we also demonstrated that the treatment with either compounds are probably interfering in the early replication rather than after RNA replication has occurred.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Antiviral Agents/pharmacology , Chikungunya virus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Binding Sites , Cell Line, Tumor , Humans , Mice , Molecular Docking Simulation , Protein Domains , Viral Nonstructural Proteins/chemistry , Virus Replication/drug effects
13.
Sci Rep ; 9(1): 17703, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776405

ABSTRACT

Zika virus (ZIKV) is a mosquito-transmitted Flavivirus, originally identified in Uganda in 1947 and recently associated with a large outbreak in South America. Despite extensive efforts there are currently no approved antiviral compounds for treatment of ZIKV infection. Here we describe the antiviral activity of diarylamines derived from anthranilic acid (FAMs) against ZIKV. A synthetic FAM (E3) demonstrated anti-ZIKV potential by reducing viral replication up to 86%. We analyzed the possible mechanisms of action of FAM E3 by evaluating the intercalation of this compound into the viral dsRNA and its interaction with the RNA polymerase of bacteriophage SP6. However, FAM E3 did not act by these mechanisms. In silico results predicted that FAM E3 might bind to the ZIKV NS3 helicase suggesting that this protein could be one possible target of this compound. To test this, the thermal stability and the ATPase activity of the ZIKV NS3 helicase domain (NS3Hel) were investigated in vitro and we demonstrated that FAM E3 could indeed bind to and stabilize NS3Hel.


Subject(s)
Antiviral Agents/pharmacology , Virus Replication , Zika Virus/drug effects , ortho-Aminobenzoates/pharmacology , Amines/chemistry , Animals , Antiviral Agents/chemical synthesis , Binding Sites , Chlorocebus aethiops , Protein Binding , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Zika Virus/physiology , ortho-Aminobenzoates/chemical synthesis
14.
Virol J ; 15(1): 34, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29439720

ABSTRACT

Hepatitis C virus (HCV) infection is a worldwide public health burden and it is estimated that 185 million people are or have previously been infected worldwide. There is no effective vaccine for prevention of HCV infection; however, a number of drugs are available for the treatment of infection. The availability of direct-acting antivirals (DAAs) has dramatically improved therapeutic options for HCV genotype 1. However, the high costs and potential for development of resistance presented by existing treatment demonstrate the need for the development of more efficient new antivirals, or combination of therapies that target different stages of the viral lifecycle. Over the past decades, there has been substantial study of compounds extracted from plants that have activity against a range of microorganisms that cause human diseases. An extensive variety of natural compounds has demonstrated antiviral action worldwide, including anti-HCV activity. In this context, plant-derived compounds can provide an alternative approach to new antivirals. In this review, we aim to summarize the most promising plant-derived compounds described to have antiviral activity against HCV.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Plant Extracts/pharmacology , Antiviral Agents/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Cell Line , Cells, Cultured , Hepatitis C/virology , Humans , Plant Extracts/chemistry , Structure-Activity Relationship , Virus Assembly/drug effects , Virus Internalization/drug effects , Virus Release/drug effects , Virus Replication/drug effects
15.
Sci Rep ; 7(1): 16127, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170411

ABSTRACT

Hepatitis C virus (HCV) is one of the leading causes of liver diseases and transplantation worldwide. The current available therapy for HCV infection is based on interferon-α, ribavirin and the new direct-acting antivirals (DAAs), such as NS3 protease and NS5B polymerase inhibitors. However, the high costs of drug design, severe side effects and HCV resistance presented by the existing treatments demonstrate the need for developing more efficient anti-HCV agents. This study aimed to evaluate the antiviral effects of sorbifolin (1) and pedalitin (2), two flavonoids from Pterogyne nitens on the HCV replication cycle. These compounds were investigated for their anti-HCV activities using genotype 2a JFH-1 subgenomic replicons and infectious virus systems. Flavonoids 1 and 2 inhibited virus entry up to 45.0% and 78.7% respectively at non-cytotoxic concentrations. The mechanism of the flavonoid 2 block to virus entry was demonstrated to be by both the direct action on virus particles and the interference on the host cells. Alternatively, the flavonoid 1 activity was restricted to its virucidal effect. Additionally, no inhibitory effects on HCV replication and release were observed by treating cells with these flavonoids. These data are the first description of 1 and 2 possessing in vitro anti-HCV activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Fabaceae/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Hepacivirus/drug effects , Flavones/chemistry , Flavones/pharmacology , Interferon-alpha/pharmacology , Virus Replication/drug effects
16.
PLoS One ; 12(11): e0187857, 2017.
Article in English | MEDLINE | ID: mdl-29141010

ABSTRACT

Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle.


Subject(s)
Antiviral Agents/isolation & purification , Crotalid Venoms/chemistry , Hepacivirus/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Crotalus , Crotoxin/chemistry , Crotoxin/pharmacology , Crystallography, X-Ray , Hepacivirus/physiology , Humans , Membrane Fusion/drug effects , Molecular Structure , Phospholipases A2/chemistry , Phospholipases A2/pharmacology , Virus Replication/drug effects
17.
J Gen Virol ; 98(7): 1693-1701, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28699869

ABSTRACT

Hepatitis C virus (HCV) affects about 170 million people worldwide. The current treatment has a high cost and variable response rates according to the virus genotype. Acridones, a group of compounds extracted from natural sources, showed potential antiviral actions against HCV. Thus, this study aimed to evaluate the effect of a panel of 14 synthetic acridones on the HCV life cycle. The compounds were screened using an Huh7.5 cell line stably harbouring the HCV genotype 2a subgenomic replicon SGR-Feo-JFH-1. Cells were incubated in the presence or absence of compounds for 72 h and cell viability and replication levels were assessed by MTT and luciferase assays, respectively. At a concentration of 5 µM the acridone Fac4 exhibited a >90 % inhibition of HCV replication with no effect on cell viability. The effects of Fac4 on virus replication, entry and release steps were evaluated in Huh7.5 cells infected with the JFH-1 isolate of HCV (HCVcc). Fac4 inhibited JFH-1 replication to approximately 70 %, while no effect was observed on virus entry. The antiviral activity of Fac4 was also observed on viral release, with almost 80 % of inhibition. No inhibitory effect was observed against genotype 3 replication. Fac4 was able to intercalate into dsRNA, however did not inhibit NS5B polymerase activity or translation driven by the HCV IRES. Although its mode of action is partly understood, Fac4 presents significant inhibition of HCV replication and can therefore be considered as a candidate for the development of a future anti-HCV treatment.


Subject(s)
Acridones/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/physiology , Virus Replication/drug effects , Acridones/chemical synthesis , Antiviral Agents/chemical synthesis , Genome, Viral/drug effects , Hepacivirus/genetics , Hepatitis C/virology , Humans , Replicon/drug effects , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...