Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 35(5): 711-22, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22332935

ABSTRACT

The GABA-synthesizing enzymes glutamate decarboxylase (GAD)1 and GAD2 are universally contained in GABAergic neurons in the central nervous system of the mouse and rat. The two isoforms are almost identically expressed throughout the brain and spinal cord. By using in situ hybridization, we found that the mouse lateral striatum concentrates medium-sized projection neurons with high-level expression of GAD1, but not of GAD2, mRNA. This was confirmed with several types of riboprobe, including those directed to the 5'-noncoding, 3'-noncoding and coding regions. Immunohistochemical localization of GAD1 also revealed predominant localization of the enzyme in the same striatal region. The lateral region of the mouse striatum, harboring such neurons, is ovoid in shape and extends between interaural +4.8 and +2.8, and at lateral 2.8 and dorsoventral 2.0. This intriguing region corresponds to the area that receives afferent inputs from the primary motor and sensory cortex that are presumably related to mouth and forelimb representations. The lateral striatum is included in the basal ganglia-thalamocortical loop, and is most vulnerable to various noxious stimuli in the neurodegeneration processes involving the basal ganglia. We have confirmed elevated expression of GAD1 mRNA, but not of GAD2 mRNA, also in the rat lateral striatum. Image analysis favored the view that the regional increase is caused by elevated cellular expression, and that the greatest number of medium-sized spiny neurons were positive for GAD1 mRNA. The GAD1 mRNA distribution in the mouse lateral striatum partially resembled those of GPR155 and cannabinoid receptor type 1 mRNAs, suggesting functional cooperation in some neurons.


Subject(s)
Corpus Striatum/enzymology , Glutamate Decarboxylase/biosynthesis , Neurons/enzymology , RNA, Messenger/biosynthesis , Animals , Corpus Striatum/cytology , Glutamate Decarboxylase/genetics , Male , Mice , Mice, Inbred C57BL , Neural Pathways/cytology , Neural Pathways/enzymology , Rats , Rats, Sprague-Dawley
2.
Anat Rec (Hoboken) ; 293(8): 1393-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20665816

ABSTRACT

Cholinergic projections to auditory system are vital for coupling arousal with sound processing. Systematic search with in situ hybridization and immunohistochemistry indicated that the ventral nucleus of the medial geniculate body and the nucleus of the brachium of the inferior colliculus constituted cholinergic synaptic sites in the brainstem auditory system, containing a significant number of cholinergic axon terminals and m2 receptor-expressing cell bodies.


Subject(s)
Auditory Cortex/cytology , Brain Stem/cytology , Cholinergic Fibers/ultrastructure , Geniculate Bodies/cytology , Inferior Colliculi/cytology , Receptor, Muscarinic M2/analysis , Receptor, Muscarinic M3/analysis , Animals , Auditory Cortex/chemistry , Auditory Pathways , Brain Stem/metabolism , Cholinergic Fibers/chemistry , Cochlear Nucleus/chemistry , Cochlear Nucleus/cytology , Geniculate Bodies/chemistry , Immunohistochemistry , In Situ Hybridization , Inferior Colliculi/chemistry , Male , Mice , Mice, Inbred C57BL , Presynaptic Terminals/chemistry , Presynaptic Terminals/ultrastructure , Vesicular Acetylcholine Transport Proteins/analysis
3.
Biochem Biophys Res Commun ; 398(1): 19-25, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20537985

ABSTRACT

Emerging evidence suggests that GPR155, an integral membrane protein related to G-protein coupled receptors, has specific roles in Huntington disease and autism spectrum disorders. This study reports the structural organization of mouse GPR155 gene and the generation of five variants (Variants 1-5) of GPR155 mRNA, including so far unknown four variants. Further, it presents the level of expression of GPR155 mRNA in different mouse tissues. The mRNAs for GPR155 are widely expressed in adult mouse tissues and during development. In situ hybridization was used to determine the distribution of GPR155 in mouse brain. The GPR155 mRNAs are widely distributed in forebrain regions and have more restricted distribution in the midbrain and hindbrain regions. The highest level of expression was in the lateral part of striatum and hippocampus. The expression pattern of GPR155 mRNAs in mouse striatum was very similar to that of cannabinoid receptor type 1. The predicted protein secondary structure indicated that GPR155 is a 17-TM protein, and Variant 1 and Variant 5 proteins have an intracellular, conserved DEP domain near the C-terminal.


Subject(s)
Alternative Splicing , Central Nervous System/metabolism , Gene Expression , Receptors, G-Protein-Coupled/genetics , Amino Acid Sequence , Amygdala/metabolism , Animals , Brain/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Mice , Molecular Sequence Data , Olfactory Pathways/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Cannabinoid, CB1/genetics , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...