Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 153(10): 104305, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32933300

ABSTRACT

To investigate microscopic characters of Si-H⋯H-O type dihydrogen bonds, we observed OH and SiH stretch bands in both the S0 and S1 states of phenol-ethyldimethylsilane (PhOH-EDMS) clusters by infrared (IR)-ultraviolet (UV) and UV-IR double resonance spectroscopies. Density functional theory (DFT) calculations and energy decomposition analysis were also performed. Structures of two isomers identified were unambiguously determined through the analysis of IR spectra and DFT calculations. To discuss the strength of dihydrogen bond in various systems, we performed theoretical calculations on clusters of EDMS with several acidic molecules in addition to PhOH. It was revealed that charge-transfer interaction energies from a bonding σ orbital of SiH bond to an anti-bonding σ* orbital of OH bond well reflect strengths of dihydrogen bonds. Additionally, it was found that the red shift of SiH stretch frequencies can be used as a crude measure of the strength of dihydrogen bonds. Relationship between the red shifts of OH/SiH stretch frequencies and various electrostatic components of the interaction energy was examined. In the S1 state, large increases in red shifts were observed for both the OH and SiH stretch frequencies. Since the EDMS moiety is not associated with the electronic excitation in a cluster, the strength of dihydrogen bonds in the S1 and S0 states was able to be directly compared based on the red shifts of the SiH stretch bands. A significant increase in the red shift of SiH stretch frequency indicates a strengthening of the dihydrogen bonds during the electronic excitation of the PhOH moiety.

2.
J Chem Phys ; 152(19): 194306, 2020 May 21.
Article in English | MEDLINE | ID: mdl-33687225

ABSTRACT

Infrared (IR) spectra in a region of the OH stretch band of phenol (PhOH)-ethyldimethylsilane (EDMS), phenol (PhOH)-triethylsilane (TES), and phenol (PhOH)-t-butyldimethylsilane (BDMS) dihydrogen-bonded clusters in the S1 state were observed. All of the species exhibited unconventional band patterns in which many combination bands appeared with comparable intensities to those of allowed bands. Such a behavior is sometimes called a Franck-Condon-like pattern. In the case of the PhOH-BDMS, one intermolecular vibrational mode is involved in this behavior. The observed IR spectra were well reproduced based on the concept of the Franck-Condon-like behavior. As an alternative treatment, we analyzed the band patterns on the concept of intensity borrowing due to the vibrational anharmonic interaction. The analysis was based on an effective Hamiltonian involving an anharmonic interaction between the OH stretch and intermolecular vibrational modes. Two treatments provided the same results. Thus, it was confirmed that the Franck-Condon-like behavior originates from vibrational anharmonic interactions. In the cases of the PhOH-EDMS and PhOH-TES, we carried out a two-dimensional Franck-Condon and an effective Hamiltonian analysis to interpret the Franck-Condon-like patterns. We examined vibrational wave functions obtained by the latter analysis. Shapes of the wave functions suggest that a recombination of the intermolecular vibrational modes occurs during the excitation of OH stretch mode in these clusters, which is a similar behavior to the Duschinsky effect in the electronic transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...