Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(30): eadg2736, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37506206

ABSTRACT

Superconducting (SC) state has spin and orbital degrees of freedom, and spin-triplet superconductivity shows multiple SC phases because of the presence of these degrees of freedom. However, the observation of spin-direction rotation occurring inside the SC state (SC spin rotation) has hardly been reported. Uranium ditelluride, a recently found topological superconductor, exhibits various SC phases under pressure: SC state at ambient pressure (SC1), high-temperature SC state above 0.5 gigapascal (SC2), and low-temperature SC state above 0.5 gigapascal (SC3). We performed nuclear magnetic resonance (NMR) and ac susceptibility measurements on a single-crystal uranium ditelluride. The b axis spin susceptibility remains unchanged in SC2, unlike in SC1, and decreases below the SC2-SC3 transition with spin modulation. These unique properties in SC3 arise from the coexistence of two SC order parameters. Our NMR results confirm spin-triplet superconductivity with SC spin parallel to b axis in SC2 and unveil the remaining of spin degrees of freedom in SC uranium ditelluride.

2.
Rev Sci Instrum ; 92(12): 123908, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972457

ABSTRACT

High-sensitivity capacitive Faraday magnetometers were developed for static DC magnetization measurements in a sub-Kelvin region that can be used with 3He-4He dilution refrigerators (∼50 mK) and 3He refrigerators (∼0.28 K). For high-resolution magnetization measurements, the background magnetization of the force-sensing capacitor should be as small as possible, compared with the magnetization value of a measured specimen. In this study, we succeeded in reducing the background of the capacitor in both low- and high-field regions by compensating for the diamagnetic response of a thin quartz plate, making use of Pauli-paramagnetic alloys and Van Vleck paramagnets as a counter magnetization for a diamagnetic signal. Having established an ultra-high-sensitivity capacitor, we achieved a resolution of 10-5 (∼10-5-10-6) emu in the low- (high-) field region below (above) 1 T. In particular, the newly developed capacitors with a Van Vleck paramagnet Pr0.1La0.9Be13 and paramagnetic MgAl alloys are demonstrated to be very useful for high-resolution magnetization measurements at milli-Kelvin temperatures in low and high magnetic fields, respectively.

3.
Phys Rev Lett ; 122(6): 067001, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30822059

ABSTRACT

To unravel the nature of the superconducting symmetry of the enigmatic 5f heavy-fermion UBe_{13}, the pressure dependence of the upper critical field and of the normal state are studied up to 10 GPa. Remarkably, the pressure evolution of the anomalous H_{c2}(T,P) over the entire pressure range up to 5.9 GPa can be successfully explained by the gradual admixture of a field-pressure-induced E_{u} component in an A_{1u} spin-triplet ground state. This result provides strong evidence for parallel-spin pairing in UBe_{13}, which is also supported by the recently observed fully gapped excitation spectrum at ambient pressure. Moreover, we have also found a novel non-Fermi-liquid behavior of the resistivity, ρ(T)∼T^{n} (n≲1), which disappears with the collapse of the negative magnetoresistance behavior and the existence of a superconducting ground state around P=6 GPa, suggesting a close interplay between Kondo scattering and superconductivity.

4.
Phys Rev Lett ; 117(3): 037001, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27472129

ABSTRACT

Quasiparticle excitations in UPd_{2}Al_{3} were studied by means of heat-capacity (C) measurements under rotating magnetic fields using a high-quality single crystal. The field dependence shows C(H)∝H^{1/2}-like behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥[0001] (c axis) and H∥[112[over ¯]0] (a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures, the polar-angle (θ) dependence of C exhibits a maximum along H∥[0001] with a twofold symmetric oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°-60° from the c axis in C(θ) at intermediate fields (1≲µ_{0}H≲2 T). These behaviors in UPd_{2}Al_{3} purely come from the superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap determination, which can be applied to other exotic superconductors.

5.
Phys Rev Lett ; 114(14): 147002, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25910153

ABSTRACT

Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

6.
Phys Rev Lett ; 109(21): 217001, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23215607

ABSTRACT

We have performed precise dc magnetization measurements for a single crystal of UBe(13) down to 0.14 K, up to 80 kOe. We observed a magnetic anomaly in the superconducting (SC) mixed state at a field, named H(Mag)(*) (~ 26 kOe, at 0.14 K), implying that UBe(13) has a magnetically unusual SC state. We studied the magnetization curves of UBe(13), assuming that the H(Mag)(*) anomaly originates from (1) and unusual SC diamagnetic response, or (2) a peculiarity of the normal-state magnetization due to vortices in the SC mixed state. The origin of the H(Mag)(*) anomaly is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...