Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
J Biol Chem ; 289(30): 20405-20420, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24914209

ABSTRACT

In plants, serine residues in extensin, a cell wall protein, are glycosylated with O-linked galactose. However, the enzyme that is involved in the galactosylation of serine had not yet been identified. To identify the peptidyl serine O-α-galactosyltransferase (SGT), we chose Chlamydomonas reinhardtii as a model. We established an assay system for SGT activity using C. reinhardtii and Arabidopsis thaliana cell extracts. SGT protein was partially purified from cell extracts of C. reinhardtii and analyzed by tandem mass spectrometry to determine its amino acid sequence. The sequence matched the open reading frame XP_001696927 in the C. reinhardtii proteome database, and a corresponding DNA fragment encoding 748 amino acids (BAL63043) was cloned from a C. reinhardtii cDNA library. The 748-amino acid protein (CrSGT1) was produced using a yeast expression system, and the SGT activity was examined. Hydroxylation of proline residues adjacent to a serine in acceptor peptides was required for SGT activity. Genes for proteins containing conserved domains were found in various plant genomes, including A. thaliana and Nicotiana tabacum. The AtSGT1 and NtSGT1 proteins also showed SGT activity when expressed in yeast. In addition, knock-out lines of AtSGT1 and knockdown lines of NtSGT1 showed no or reduced SGT activity. The SGT1 sequence, which contains a conserved DXD motif and a C-terminal membrane spanning region, is the first example of a glycosyltransferase with type I membrane protein topology, and it showed no homology with known glycosyltransferases, indicating that SGT1 belongs to a novel glycosyltransferase gene family existing only in the plant kingdom.

3.
Plant Physiol ; 152(1): 332-40, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19923238

ABSTRACT

We characterized peptidyl hydroxyproline (Hyp) O-galactosyltransferase (HGT), which is the initial enzyme in the arabinogalactan biosynthetic pathway. An in vitro assay of HGT activity was established using chemically synthesized fluorescent peptides as acceptor substrates and extracts from Arabidopsis (Arabidopsis thaliana) T87 cells as a source of crude enzyme. The galactose residue transferred to the peptide could be detected by high-performance liquid chromatography and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analyses. HGT required a divalent cation of manganese for maximal activity and consumed UDP-D-galactose as a sugar donor. HGT exhibited an optimal pH range of pH 7.0 to 8.0 and an optimal temperature of 35 degrees C. The favorable substrates for the activity seemed to be peptides containing two alternating imino acid residues including at least one acceptor Hyp residue, although a peptide with single Hyp residue without any other imino acids also functioned as a substrate. The results of sucrose density gradient centrifugation revealed that the cellular localization of HGT activity is identical to those of endoplasmic reticulum markers such as Sec61 and Bip, indicating that HGT is predominantly localized to the endoplasmic reticulum. To our knowledge, this is the first characterization of HGT, and the data provide evidence that arabinogalactan biosynthesis occurs in the protein transport pathway.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Endoplasmic Reticulum/enzymology , Galactosyltransferases/metabolism , Peptides/metabolism , Arabidopsis/cytology , Cell Line , Hydrogen-Ion Concentration , Temperature
4.
Appl Environ Microbiol ; 72(11): 7003-12, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16936046

ABSTRACT

Fifty-one human glycosyltransferases were expressed in Saccharomyces cerevisiae as immobilized enzymes and were assayed for enzymatic activities. The stem and catalytic regions of sialyl-, fucosyl-, galactosyl-, N-acetylgalactosaminyl-, and N-acetylglucosaminyltransferases were fused with yeast cell wall Pir proteins, which anchor glycosyltransferases at the yeast cell wall glucan. More than 75% of expressed recombinant glycosyltransferases retained their enzymatic activities in the yeast cell wall fraction and will be used as a human glycosyltransferase library. In increasing the enzymatic activities of immobilized glycosyltransferases, several approaches were found to be effective. Additional expression of yeast protein disulfide isomerase increased the expression levels and activities of polypeptide N-acetylgalactosaminyltransferases and other glycosyltransferases. PIR3 and/or PIR4 was more effective than PIR1 as a cell wall anchor when the Pir-glycosyltransferase fusions were expressed under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. Oligosaccharides such as Lewis x, Lewis y, and H antigen were successfully synthesized using this immobilized glycosyltransferase library, indicating that the Pir-fused glycosyltransferases are useful for the production of various human oligosaccharides.


Subject(s)
Cell Wall/enzymology , Enzymes, Immobilized , Gene Library , Glycosyltransferases/metabolism , Saccharomyces cerevisiae/enzymology , Biotechnology/methods , Cell Wall/genetics , Culture Media , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycoproteins , Glycosyltransferases/genetics , Humans , Hydrogen-Ion Concentration , Oligosaccharides/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
J Biol Chem ; 281(10): 6261-72, 2006 Mar 10.
Article in English | MEDLINE | ID: mdl-16407250

ABSTRACT

The alpha-1,6-mannosyltransferase encoded by Saccharomyces cerevisiae OCH1 (ScOCH1) is responsible for the outer chain initiation of N-linked oligosaccharides. To identify the genes involved in the first step of outer chain biosynthesis in the methylotrophic yeast Hansenula polymorpha, we undertook the functional analysis of three H. polymorpha genes, HpHOC1, HpOCH1, and HpOCR1, that belong to the OCH1 family containing seven members with significant sequence identities to ScOCH1. The deletions of these H. polymorpha genes individually resulted in several phenotypes suggestive of cell wall defects. Whereas the deletion of HpHOC1 (Hphoc1Delta) did not generate any detectable changes in N-glycosylation, the null mutant strains of HpOCH1 (Hpoch1Delta) and HpOCR1 (Hpocr1Delta) displayed a remarkable reduction in hypermannosylation. Although the apparent phenotypes of Hpocr1Delta were most similar to those of S. cerevisiae och1 mutants, the detailed structural analysis of N-glycans revealed that the major defect of Hpocr1Delta is not in the initiation step but rather in the subsequent step of outer chain elongation by alpha-1,2-mannose addition. Most interestingly, Hpocr1Delta showed a severe defect in the O-linked glycosylation of extracellular chitinase, representing HpOCR1 as a novel member of the OCH1 family implicated in both N- and O-linked glycosylation. In contrast, addition of the first alpha-1,6-mannose residue onto the core oligosaccharide Man8GlcNAc2 was completely blocked in Hpoch1Delta despite the comparable growth of its wild type under normal growth conditions. The complementation of the S. cerevisiae och1 null mutation by the expression of HpOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in Hpoch1Delta provided supportive evidence that HpOCH1 is the functional orthologue of ScOCH1. The engineered Hpoch1Delta strain with the targeted expression of Aspergillus saitoi alpha-1,2-mannosidase in the endoplasmic reticulum was shown to produce human-compatible high mannose-type Man5GlcNAc2 oligosaccharide as a major N-glycan.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycosyltransferases/genetics , Mannosyltransferases/genetics , Membrane Proteins/genetics , Multigene Family , Pichia/genetics , Amino Acid Sequence , Fungal Proteins/physiology , Glycosylation , Glycosyltransferases/chemistry , Glycosyltransferases/physiology , Mannosyltransferases/chemistry , Mannosyltransferases/physiology , Membrane Glycoproteins/chemistry , Membrane Proteins/chemistry , Membrane Proteins/physiology , Molecular Sequence Data , Mutation , Pichia/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Sequence Homology, Nucleic Acid
6.
Eukaryot Cell ; 4(11): 1872-81, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16278454

ABSTRACT

We examined the localization of the Pir protein family (Pir1 to Pir4), which is covalently linked to the cell wall in an unknown manner. In contrast to the other Pir proteins, a fusion of Pir1p and monomeric red fluorescent protein distributed in clusters in pir1Delta cells throughout the period of cultivation, indicating that Pir1p is localized in bud scars. Further microscopic analysis revealed that Pir1p is expressed inside the chitin rings of the bud scars. Stepwise deletion of the eight units of the repetitive sequence of Pir1p revealed that one unit is enough for the protein to bind bud scars and that the extent of binding of Pir1p to the cell wall depends on the number of these repetitive units. The localization of a chimeric Pir1p in which the repetitive sequence of Pir1p was replaced with that of Pir4p revealed the functional role of the different protein regions, specifically, that the repetitive sequence is required for binding to the cell wall and that the C-terminal sequence is needed for recruitment to bud scars. This is the first report that bud scars contain proteins like Pir1p as internal components.


Subject(s)
Cell Wall/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Amino Acid Sequence , Cell Division/physiology , Cell Polarity , Chitin/metabolism , Fungal Proteins/genetics , Glycoproteins , Molecular Sequence Data , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment
7.
Glycoconj J ; 21(1-2): 75-8, 2004.
Article in English | MEDLINE | ID: mdl-15467403

ABSTRACT

We planned the production of human glycosyltransferases in yeast for the enzymatic synthesis of various sugar chains. More than 160 genes encoding various glycosyltransferases were prepared as N-terminal transmembrane region truncated forms by PCR and were inserted into the entry vector of Invitrogen Ltd's Gateway system. About fifty glycosyltransferases were chosen for the synthesis of human type oligosaccharides, and expressed as two different forms in yeast. One is a soluble form, which is secreted into the culture medium by methylotrophic yeast, and the other is an immobilized form, which is displayed at the budding yeast cell wall as a fusion protein with Pir protein. To date, in both systems, some sialyltranferases and fucosyltransferases have been produced as active forms, indicating the potential usefulness of these systems for the enzymatic synthesis of various types of human sugar chains attached to proteins and lipids.


Subject(s)
Glycosyltransferases/biosynthesis , Glycosyltransferases/genetics , Cell Wall , Fucosyltransferases/chemistry , Fungal Proteins/chemistry , Gene Library , Glycosylation , Humans , Lipids/chemistry , Microscopy, Fluorescence , Oligosaccharides/chemistry , Polymerase Chain Reaction , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism
8.
FEMS Yeast Res ; 4(4-5): 417-25, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14734022

ABSTRACT

Human alpha-1,3-fucosyltansferase (FucT) encoded by the FUT6 gene was displayed at the cell surface of yeast cells engineered using the yeast cell wall protein Pir1 or Pir2, and the FucT activity was detected at the surface of cells producing the Pir1-HA-FUT6 or Pir2-FLAG-FUT6 fusion proteins. To obtain higher activity, we engineered the host yeast cells in which endogenous PIR genes of the PIR1-4 gene family were disrupted. Among the disruptants, the pir1Delta pir2Delta pir3Delta strain with the PIR1-HA-FUT6 fusion gene showed the highest FucT activity, which was about three-fold higher than that of the wild-type strain. Furthermore, the co-expression of both the Pir1-HA-FUT6 and the Pir2-FLAG-FUT6 fusions showed an approximately 1.5-fold higher activity than that in the cell wall displaying Pir1-HA-FUT6 alone. The present method was thus effective for producing yeast cells that can easily synthesize various oligosaccharides, such as Le(x) and sLe(x), using Pir-glycosyltransferase fusions in combination with the deletion of endogenous PIR genes.


Subject(s)
Fucosyltransferases/genetics , Saccharomyces cerevisiae/enzymology , Base Sequence , Cell Membrane/enzymology , Cloning, Molecular , DNA Primers , Fucosyltransferases/metabolism , Gene Deletion , Humans , Molecular Sequence Data , Polymerase Chain Reaction , Saccharomyces cerevisiae/genetics
9.
Glycobiology ; 14(3): 243-51, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14693910

ABSTRACT

Presently almost no information is available on the oligosaccharide structure of the glycoproteins secreted from the methylotrophic yeast Hansenula polymorpha, a promising host for the production of recombinant proteins. In this study, we analyze the size distribution and structure of N-linked oligosaccharides attached to the recombinant glycoprotein glucose oxidase (GOD) and the cell wall mannoproteins obtained from H. polymorpha. Oligosaccharide profiling showed that the major oligosaccharide species derived from the H. polymorpha-secreted recombinant GOD (rGOD) had core-type structures (Man(8-12)GlcNAc(2)). Analyses using anti-alpha 1,3-mannose antibody and exoglycosidases specific for alpha 1,2- or alpha 1,6-mannose linkages revealed that the mannose outer chains of N-glycans on the rGOD have very short alpha 1,6 extensions and are mainly elongated in alpha 1,2-linkages without a terminal alpha 1,3-linked mannose addition. The N-glycans released from the H. polymorpha mannoproteins were shown to contain mostly mannose in their outer chains, which displayed almost identical size distribution and structure to those of H. polymorpha-derived rGOD. These results strongly indicate that the outer chain processing of N-glycans by H. polymorpha significantly differs from that by Saccharomyces cerevisiae, thus generating much shorter mannose outer chains devoid of terminal alpha 1,3-linked mannoses.


Subject(s)
Cell Wall/metabolism , Fungal Proteins/metabolism , Glucose Oxidase/metabolism , Membrane Glycoproteins/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Pichia/metabolism , Amino Acid Sequence , Cell Wall/chemistry , Chromatography, High Pressure Liquid , Glucose Oxidase/chemistry , Glucose Oxidase/genetics , Glycoside Hydrolases/metabolism , Glycosylation , Molecular Sequence Data , Pichia/enzymology , Pichia/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Glycobiology ; 13(2): 87-95, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12626410

ABSTRACT

A glycosyltransferase was fused to the yeast cell wall protein Pir, which forms the Pir1-4 protein family and is incorporated into the cell wall by an unknown linkage to be displayed at the yeast cell surface. We first expressed the PIR1-HA-gma12+ fusion, in which gma12+ encodes alpha-1,2-galactosyltransferase from the fission yeast Schizosaccharomyces pombe under the Saccharomyces cerevisiae GAPDH promoter. The alpha-1,2-galactosyltransferase activity was detected at the surface of the intact cells that produce Pir1-HA-Gma12 fusion. To further demonstrate sequential oligosaccharide synthesis, two plasmids containing PIR1-HA-KRE2 and PIR2-FLAG-MNN1 fusion genes were constructed in which KRE2 and MNN1 encode alpha-1,2-mannosyltransferase and alpha-1,3-mannosyltransferase from S. cerevisiae, respectively. The intact yeast cells transformed with these two plasmids added mannoses initially with an alpha-1,2 linkage and subsequently with an alpha-1,3 linkage to the alpha-1,2-mannobiose acceptor in the presence of a GDP-mannose donor, demonstrating that Pir1 and Pir2 can be used as anchors to simultaneously immobilize several glycosyltransferases at the yeast cell surface. Based on the high acceptor specificity of glycosyltransferases, we propose a simple in vitro method for oligosaccharide synthesis using the yeast intact cell as a biocatalyst.


Subject(s)
Galactosyltransferases/metabolism , Oligosaccharides/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Blotting, Western , Cell Membrane/metabolism , Cell Wall/metabolism , Chromatography, High Pressure Liquid/methods , Fluorescent Antibody Technique, Indirect/methods , Galactosyltransferases/genetics , Molecular Sequence Data , Oligosaccharides/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Schizosaccharomyces/enzymology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...