Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1182431, 2023.
Article in English | MEDLINE | ID: mdl-37426070

ABSTRACT

Spinocerebellar ataxias (SCAs) are a group of hereditary neurodegenerative diseases mostly affecting cerebellar Purkinje cells caused by a wide variety of different mutations. One subtype, SCA14, is caused by mutations of Protein Kinase C gamma (PKCγ), the dominant PKC isoform present in Purkinje cells. Mutations in the pathway in which PKCγ is active, i.e., in the regulation of calcium levels and calcium signaling in Purkinje cells, are the cause of several other variants of SCA. In SCA14, many of the observed mutations in the PKCγ gene were shown to increase the basal activity of PKCγ, raising the possibility that increased activity of PKCγ might be the cause of most forms of SCA14 and might also be involved in the pathogenesis of SCA in related subtypes. In this viewpoint and review article we will discuss the evidence for and against such a major role of PKCγ basal activity and will suggest a hypothesis of how PKCγ activity and the calcium signaling pathway may be involved in the pathogenesis of SCAs despite the different and sometimes opposing effects of mutations affecting these pathways. We will then widen the scope and propose a concept of SCA pathogenesis which is not primarily driven by cell death and loss of Purkinje cells but rather by dysfunction of Purkinje cells which are still present and alive in the cerebellum.

2.
Genes (Basel) ; 13(8)2022 08 09.
Article in English | MEDLINE | ID: mdl-36011327

ABSTRACT

The autosomal dominant inherited spinocerebellar ataxias (SCAs) are a group of neurodegenerative disorders characterized by cerebellar atrophy and loss of Purkinje neurons. Spinocerebellar ataxia type 14 (SCA14) is a rare variant of SCAs caused by missense mutations or deletions in the PRKCG gene encoding the protein kinase C γ (PKCγ). Although mutated PKCγs are responsible for SCA14, it is still unclear exactly how mutated PKCγs are involved in SCA14 pathogenesis. Therefore, it is important to study how PKCγ signaling is altered in the cerebellum, which genes or signaling pathways are affected, and how this leads to neurological disease. In this study, we used a mouse line carrying a knock-in pseudo-substrate domain mutation in PKCγ (PKCγ-A24E) as an SCA14 model and performed RNA sequencing (RNA-seq) analysis at an early developmental timepoint (postnatal day 15) to investigate changes in the gene profile compared to wildtype mice. We analyzed both heterozygous (Het) PKCγ-A24E mice and homozygous (Homo) PKCγ-A24E mice for transcriptomic changes. The Het PKCγ-A24E mice reflects the situation observed in human SCA14 patient, while Homo PKCγ-A24E mice display stronger phenotypes with respect to Purkinje cell development and behavior. Our findings highlight an abundance of modifications affecting genes involved in developmental processes, suggesting that at least a part of the final phenotype is shaped by altered cerebellar development and is not only caused by changes in mature animals.


Subject(s)
Spinocerebellar Ataxias , Transcriptome , Animals , Cerebellum/pathology , Disease Models, Animal , Humans , Mice , Purkinje Cells/pathology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
3.
J Neurosci ; 41(9): 2053-2068, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33478986

ABSTRACT

Spinocerebellar ataxias (SCAs) are diseases characterized by cerebellar atrophy and loss of Purkinje neurons caused by mutations in diverse genes. In SCA14, the disease is caused by point mutations or small deletions in protein kinase C γ (PKCγ), a crucial signaling protein in Purkinje cells. It is still unclear whether increased or decreased PKCγ activity may be involved in the SCA14 pathogenesis. In this study, we present a new knock-in mouse model related to SCA14 with a point mutation in the pseudosubstrate domain, PKCγ-A24E, known to induce a constitutive PKCγ activation. In this protein conformation, the kinase domain of PKCγ is activated, but at the same time the protein is subject to dephosphorylation and protein degradation. As a result, we find a dramatic reduction of PKCγ protein expression in PKCγ-A24E mice of either sex. Despite this reduction, there is clear evidence for an increased PKC activity in Purkinje cells from PKCγ-A24E mice. Purkinje cells derived from PKCγ-A24E have short thickened dendrites typical for PKC activation. These mice also develop a marked ataxia and signs of Purkinje cell dysfunction making them an interesting new mouse model related to SCA. Recently, a similar mutation in a human patient was discovered and found to be associated with overt SCA14. RNA profiling of PKCγ-A24E mice showed a dysregulation of related signaling pathways, such as mGluR1 or mTOR. Our results show that the induction of PKCγ activation in Purkinje cells results in the SCA-like phenotype indicating PKC activation as one pathogenetic avenue leading to a SCA.SIGNIFICANCE STATEMENT Spinocerebellar ataxias (SCAs) are hereditary diseases affecting cerebellar Purkinje cells and are a one of neurodegenerative diseases. While mutation in several genes have been identified as causing SCAs, it is unclear how these mutations cause the disease phenotype. Mutations in PKCγ cause one subtype of SCAs, SCA14. In this study, we have generated a knock-in mouse with a mutation in the pseudosubstrate domain of PKCγ, which keeps PKCγ in the constitutive active open conformation. We show that this mutation leading to a constant activation of PKCγ results in a SCA-like phenotype in these mice. Our findings establish the constant activation of PKC signaling as one pathogenetic avenue leading to an SCA phenotype and a mechanism causing a neurodegenerative disease.


Subject(s)
Protein Kinase C/genetics , Protein Kinase C/metabolism , Purkinje Cells/metabolism , Spinocerebellar Ataxias/genetics , Animals , Cell Differentiation/physiology , Disease Models, Animal , Female , Gene Knock-In Techniques , Humans , Male , Mice , Motor Activity/physiology , Mutation , Purkinje Cells/pathology , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology
4.
Mol Neurobiol ; 57(12): 5150-5166, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32860158

ABSTRACT

The signalling protein PKCγ is a major regulator of Purkinje cell development and synaptic function. We have shown previously that increased PKCγ activity impairs dendritic development of cerebellar Purkinje cells. Mutations in the protein kinase Cγ gene (PRKCG) cause spinocerebellar ataxia type 14 (SCA14). In a transgenic mouse model of SCA14 expressing the human S361G mutation, Purkinje cell dendritic development is impaired in cerebellar slice cultures similar to pharmacological activation of PKC. The mechanisms of PKCγ-driven inhibition of dendritic growth are still unclear. Using immunoprecipitation-coupled mass spectrometry analysis, we have identified collapsin response mediator protein 2 (CRMP2) as a protein interacting with constitutive active PKCγ(S361G) and confirmed the interaction with the Duolink™ proximity ligation assay. We show that in cerebellar slice cultures from PKCγ(S361G)-mice, phosphorylation of CRMP2 at the known PKC target site Thr555 is increased in Purkinje cells confirming phosphorylation of CRMP2 by PKCγ. miRNA-mediated CRMP2 knockdown decreased Purkinje cell dendritic outgrowth in dissociated cerebellar cultures as did the transfection of CRMP2 mutants with a modified Thr555 site. In contrast, dendritic development was normal after wild-type CRMP2 overexpression. In a novel knock-in mouse expressing only the phospho-defective T555A-mutant CRMP2, Purkinje cell dendritic development was reduced in dissociated cultures. This reduction could be rescued by transfecting wild-type CRMP2 but only partially by the phospho-mimetic T555D-mutant. Our findings establish CRMP2 as an important target of PKCγ phosphorylation in Purkinje cells mediating its control of dendritic development. Dynamic regulation of CRMP2 phosphorylation via PKCγ is required for its correct function.


Subject(s)
Cerebellum/cytology , Dendrites/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C/metabolism , Purkinje Cells/metabolism , Animals , Base Sequence , Gene Knockdown Techniques , Mice, Transgenic , Models, Biological , Phosphorylation , Phosphothreonine/metabolism , Protein Binding
5.
Curr Neuropharmacol ; 16(2): 151-159, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-28554312

ABSTRACT

BACKGROUND: Spinocerebellar ataxias (SCAs) are a group of cerebellar diseases characterized by progressive ataxia and cerebellar atrophy. Several forms of SCAs are caused by missense mutations or deletions in genes related to calcium signaling in Purkinje cells. Among them, spinocerebellar ataxia type 14 (SCA14) is caused by missense mutations in PRKCG gene which encodes protein kinase C gamma (PKCγ). It is remarkable that in several cases in which SCA is caused by point mutations in an individual gene, the affected genes are involved in the PKCγ signaling pathway and calcium signaling which is not only crucial for proper Purkinje cell function but is also involved in the control of Purkinje cell dendritic development. In this review, we will focus on the PKCγ signaling related genes and calcium signaling related genes then discuss their role for both Purkinje cell dendritic development and cerebellar ataxia. METHODS: Research related to SCAs and Purkinje cell dendritic development is reviewed. RESULTS: PKCγ dysregulation causes abnormal Purkinje cell dendritic development and SCA14. Carbonic anhydrase related protein 8 (Car8) encoding CAR8 and Itpr1 encoding IP3R1were identified as upregulated genes in one of SCA14 mouse model. IP3R1, CAR8 and PKCγ proteins are strongly and specifically expressed in Purkinje cells. The common function among them is that they are involved in the regulation of calcium homeostasis in Purkinje cells and their dysfunction causes ataxia in mouse and human. Furthermore, disruption of intracellular calcium homeostasis caused by mutations in some calcium channels in Purkinje cells links to abnormal Purkinje cell dendritic development and the pathogenesis of several SCAs. CONCLUSION: Once PKCγ signaling related genes and calcium signaling related genes are disturbed, the normal dendritic development of Purkinje cells is impaired as well as the integration of signals from other neurons, resulting in abnormal development, cerebellar dysfunction and eventually Purkinje cell loss.


Subject(s)
Calcium Signaling/genetics , Dendrites/physiology , Protein Kinase C/genetics , Purkinje Cells/cytology , Spinocerebellar Ataxias , Animals , Biomarkers, Tumor/genetics , Disease Models, Animal , Humans , Mice , Mutation , Nerve Tissue Proteins/genetics , Protein Kinase C/metabolism , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology
6.
Mol Brain ; 10(1): 34, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28738819

ABSTRACT

Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disorder characterized by slowly progressive cerebellar dysfunction. Currently, 42 SCA types are known, some of which are caused by CAG repeat expansions, but others are caused by point mutations or deletions. Spinocerebellar ataxia type 14 (SCA14) is caused by missense mutations or deletions in the PRKCG gene, coding for protein kinase C gamma (PKCγ). It is still not well understood how these mutations eventually cause Purkinje cell dysfunction and death. Because PKCγ is a well characterized signaling protein highly expressed in Purkinje cells SCA14 offers the chance to better understand the pathogenesis of Purkinje cell dysfunction and death. Altered biological activity of PKCγ would be the simplest explanation for the disease phenotype. There are indeed indications that the enzymatic activity of mutated PKCγ proteins could be changed. Many mutations found in SCA14 families are located in the regulatory C1B and C1A domain, while a few mutations are also found in the C2 and in the catalytic C3 and C4 domains. For many of these mutations an increased enzymatic activity could be demonstrated in cell-based assays, but it remains unclear whether there is indeed an altered biological activity of the mutated PKCγ proteins within living Purkinje cells. In this study we used the dendritic morphology of developing Purkinje cells to detect increased biological activity of PKCγ after expression of different mutated PKCγ proteins. Our results indicate that two out of three known mutations in the catalytic domain of PKCγ did indeed show increased biological activity. On the other hand, none of the five tested mutations located in the regulatory C1 or the C2 domain showed an increased biological activity. Our findings indicate that SCA14 mutations located in different domains of the PRKCG gene cause SCA14 by different mechanisms and that an increased constitutive activity of PKCγ may be one, but cannot be the only mechanism to cause disease in SCA14.


Subject(s)
Protein Kinase C/metabolism , Spinocerebellar Ataxias/enzymology , Animals , Catalytic Domain , Cells, Cultured , Dendrites/metabolism , Humans , Mice, Transgenic , Mutant Proteins/metabolism , Mutation/genetics , Protein Domains , Protein Kinase C/chemistry , Purkinje Cells/pathology , Tissue Culture Techniques , Transfection
7.
Mol Neurobiol ; 53(8): 5149-60, 2016 10.
Article in English | MEDLINE | ID: mdl-26399641

ABSTRACT

Purkinje cell dendritic development is severely compromised after chronic activation of protein kinase C (PKC). In a recent transgenic mouse model of spinocerebellar ataxia 14, the ser361-to-gly (S361G) mutation of the protein kinase C gamma (PKCγ) gene was expressed in Purkinje cells. Purkinje cells from these mutant mice in organotypic slice cultures have the same stunted dendritic tree as Purkinje cells after pharmacological activation of PKC. Because the transgene is exclusively present in Purkinje cells, cerebellar tissue from these mice is an attractive starting material for searching genes which might be interacting with PKCγ in Purkinje cells for inducing the stunted dendritic growth. We have performed a microarray analysis and identified several candidate genes with an increased messenger RNA (mRNA) expression in the PKCγ-S361G transgenic Purkinje cells. Out of these candidates, we have further studied carbonic anhydrase 8 (CA8). We show here that CA8 mRNA and protein expression is strongly induced in PKCγ-S361G transgenic Purkinje cells. Overexpression of CA8 in Purkinje cells in dissociated cultures strongly inhibited Purkinje cell dendritic development and produced a dendritic phenotype similar to PKCγ-S361G. There was no evidence for a direct binding of CA8 to either PKCγ or the type 1 IP3 receptor. Knockdown of CA8 with miRNA did not alter Purkinje cell dendritic development and did not protect Purkinje cells in dissociated cultures from the stunted dendritic growth induced by PKCγ-S361G or by PKC activation. Our results indicate that CA8 is a novel important regulator of Purkinje cell dendritic development and that its expression is controlled by PKCγ activity.


Subject(s)
Biomarkers, Tumor/metabolism , Dendrites/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C/metabolism , Purkinje Cells/enzymology , Animals , Cell Shape , Cerebellum/metabolism , Gene Knockdown Techniques , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice, Transgenic , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , Protein Binding , Up-Regulation/genetics
8.
Neurobiol Dis ; 70: 1-11, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24937631

ABSTRACT

Spinocerebellar ataxias (SCAs) are hereditary diseases leading to Purkinje cell degeneration and cerebellar dysfunction. Most forms of SCA are caused by expansion of CAG repeats similar to other polyglutamine disorders such as Huntington's disease. In contrast, in the autosomal dominant SCA-14 the disease is caused by mutations in the protein kinase C gamma (PKCγ) gene which is a well characterized signaling molecule in cerebellar Purkinje cells. The study of SCA-14, therefore, offers the unique opportunity to reveal the molecular and pathological mechanism eventually leading to Purkinje cell dysfunction and degeneration. We have created a mouse model of SCA-14 in which PKCγ protein with a mutation found in SCA-14 is specifically expressed in cerebellar Purkinje cells. We find that in mice expressing the mutated PKCγ protein the morphology of Purkinje cells in cerebellar slice cultures is drastically altered and mimics closely the morphology seen after pharmacological PKC activation. Similar morphological abnormalities were seen in localized areas of the cerebellum of juvenile transgenic mice in vivo. In adult transgenic mice there is evidence for some localized loss of Purkinje cells but there is no overall cerebellar atrophy. Transgenic mice show a mild cerebellar ataxia revealed by testing on the rotarod and on the walking beam. Our findings provide evidence for both an increased PKCγ activity in Purkinje cells in vivo and for pathological changes typical for cerebellar disease thus linking the increased and dysregulated activity of PKCγ tightly to the development of cerebellar disease in SCA-14 and possibly also in other forms of SCA.


Subject(s)
Protein Kinase C/metabolism , Purkinje Cells/enzymology , Purkinje Cells/pathology , Spinocerebellar Degenerations/enzymology , Spinocerebellar Degenerations/pathology , Animals , Blotting, Western , Cerebellum/enzymology , Cerebellum/growth & development , Cerebellum/pathology , Dendrites/enzymology , Dendrites/pathology , Disease Models, Animal , Humans , Immunohistochemistry , Mice, Transgenic , Motor Activity/physiology , Mutation , Protein Kinase C/genetics , Rotarod Performance Test , Spinocerebellar Ataxias , Tissue Culture Techniques
9.
Microbiologyopen ; 3(2): 196-212, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24510621

ABSTRACT

Sphingolipids are a family of eukaryotic lipids biosynthesized from sphingoid long-chain bases (LCBs). Sphingolipids are an essential class of lipids, as their depletion results in cell death. However, acute LCB supplementation is also toxic; thus, proper cellular LCB levels should be maintained. To characterize the "sphingolipid-signaling intercross," we performed a kinome screening assay in which budding yeast protein kinase-knockout strains were screened for resistance to ISP-1, a potent inhibitor of LCB biosynthesis. Here, one pair of such DIR (deletion-mediated ISP-1 resistance) genes, FPK1 and FPK2, was further characterized. Cellular LCB levels increased in the fpk1/2∆ strain, which was hypersensitive to phytosphingosine (PHS), a major LCB species of yeast cells. Concomitantly, this strain acquired resistance to ISP-1. Fpk1 and Fpk2 were involved in two downstream events; that is, ISP-1 uptake due to aminophospholipid flippase and LCB degradation due to LCB4 expression. RSK3, which belongs to the p90-S6K subfamily, was identified as a functional counterpart of Fpk1/2 in mammalian cells as the RSK3 gene functionally complemented the ISP-1-resistant phenotype of fpk1/2∆ cells.


Subject(s)
Glycosphingolipids/metabolism , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Cytosol/chemistry , Fatty Acids, Monounsaturated/metabolism , Gene Deletion , Gene Expression Profiling , Protein Kinases/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...