Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropeptides ; 44(3): 279-83, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20189644

ABSTRACT

The effects of various protease inhibitors on naloxone-precipitated withdrawal jumping were examined in morphine-dependent mice. The doses of morphine were subcutaneously given twice daily for 2 days (day 1, 30 mg/kg; day 2, 60 mg/kg). On day 3, naloxone (8 mg/kg) was intraperitoneally administered 3h after final injection of morphine (60 mg/kg), and the number of jumping was immediately recorded for 20 min. Naloxone-precipitated withdrawal jumping was significantly suppressed by the intracerebroventricular administration of N-ethylmaleimide (0.5 nmol) and Boc-Tyr-Gly-NHO-Bz (0.4 nmol), inhibitors of cysteine proteases involved in dynorphin degradation, 5 min before each morphine treatment during the induction phase, with none given on the test day, as well as by dynorphin A (62.5 pmol) and dynorphin B (250 pmol). However, amastatin, an aminopeptidase inhibitor, phosphoramidon, an endopeptidase 24.11 inhibitor, and captopril, an angiotensin-converting enzyme inhibitor, caused no changes. The present results suggest that cysteine protease inhibitors suppress naloxone-precipitated withdrawal jumping in morphine-dependent mice, presumably through the inhibition of dynorphin degradation.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Morphine Dependence/physiopathology , Naloxone/pharmacology , Substance Withdrawal Syndrome/physiopathology , Animals , Dipeptides/administration & dosage , Dipeptides/metabolism , Dynorphins/administration & dosage , Dynorphins/metabolism , Ethylmaleimide/administration & dosage , Ethylmaleimide/pharmacology , Injections, Intraventricular , Male , Mice
2.
Neurosci Lett ; 450(3): 365-8, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19084050

ABSTRACT

The present study was designed to determine whether the p53 tumor-suppressor protein is involved in the development of antinociceptive tolerance to morphine. When the doses of morphine (mg/kg per injection) were subcutaneously given into mice as pretreatment twice daily for 2 days (first day (30) and second day (60)), intrathecal (i.t.) administration of morphine (0.1nmol) was inactive due to antinociceptive tolerance in the 0.5% formalin test on the third day. Tolerance to i.t. morphine was significantly suppressed by i.t. injection of pifithrin-alpha (1 and 10nmol), an inhibitor of p53 activation, benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (Z-VAD-fmk) (1 and 10nmol), a non-selective caspase inhibitor, or N(G)-nitro-l-arginine methyl ester (l-NAME) (2 and 20nmol), a non-selective inhibitor of nitric oxide synthase, 5min before each morphine treatment during the induction, with none given on the test day. Moreover, p53 expression in the spinal cord had increased significantly 14h after the last morphine administration. These results indicate that the increased expression and activation of p53, and the nitric oxide and caspase systems related to p53 may contribute to the development of antinociceptive tolerance to morphine in the mouse spinal cord.


Subject(s)
Drug Tolerance/physiology , Morphine/pharmacology , Narcotics/pharmacology , Pain/drug therapy , Spinal Cord/drug effects , Tumor Suppressor Protein p53/drug effects , Animals , Caspase Inhibitors , Caspases/metabolism , Disease Models, Animal , Drug Administration Schedule , Enzyme Inhibitors/pharmacology , Injections, Spinal , Injections, Subcutaneous , Male , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/antagonists & inhibitors , Nitric Oxide Synthase Type I/metabolism , Spinal Cord/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology
3.
Neuropeptides ; 42(3): 239-44, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18440066

ABSTRACT

The effects of various protease inhibitors on the development of antinociceptive tolerance to morphine were examined in mice. Intrathecal (i.t.) administration of morphine (0.01-1 nmol) produced a dose-dependent and significant antinociceptive effect in the 0.5% formalin test. When the doses of morphine (mg/kg, s.c. per injection) were given as pretreatment twice daily for two days [first day (30) and second day (60)], i.t. administration of morphine (0.1 nmol) was inactive due to antinociceptive tolerance on the third day. Tolerance to i.t. morphine was significantly suppressed by the i.t. injection of N-ethylmaleimide or Boc-Tyr-Gly-NHO-Bz, inhibitors of cysteine proteases involved in dynorphin degradation, as well as by dynorphin A, dynorphin B and (-) U-50,488, a selective kappa-opioid receptor agonist. On the other hand, amastatin, an aminopeptidase inhibitor, phosphoramidon, an endopeptidase 24.11 inhibitor, lisinopril, an angiotensin-converting enzyme inhibitor, and phenylmethanesulfonyl fluoride, a serine protease inhibitor, were inactive. These results suggest that cysteine protease inhibitors suppress the development of morphine tolerance presumably through the inhibition of dynorphin degradation.


Subject(s)
Analgesics, Opioid/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Drug Tolerance/physiology , Morphine/pharmacology , Pain Measurement/drug effects , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Animals , Dynorphins/pharmacology , Ethylmaleimide/pharmacology , Formaldehyde , Injections, Spinal , Injections, Subcutaneous , Male , Mice
4.
Neuropeptides ; 41(1): 33-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17140659

ABSTRACT

Intrathecal (i.t.) administration into mice of S-(+)-fenfluramine (0.01-0.1nmol), a serotonin (5-hydroxytryptamine, 5-HT) releaser, produced a behavioral response consisting of scratching, biting and licking. Here, we report the behavioral characteristics and the involvement of interactions between 5-HT and substance P (SP) systems in the S-(+)-fenfluramine-induced behavioral response. The S-(+)-fenfluramine-induced behavioral response peaked at 5-15min and almost disappeared at 20min after injection. The behavior induced by S-(+)-fenfluramine (0.1nmol) was dose-dependently inhibited by an intraperitoneal injection of morphine (0.02-0.5mg/kg), suggesting that the behavioral response is related to nociception. The S-(+)-fenfluramine-induced nociceptive behavior was significantly inhibited by pretreatment with 5-HT antiserum and co-administration of ketanserin, a selective 5-HT2 receptor antagonist. However, WAY-100635, a selective 5-HT1A receptor antagonist, and ramosetron, a selective 5-HT3 receptor antagonist, were not active. On the other hand, SP antiserum and RP67580, a selective neurokinin-1 (NK1) receptor antagonist, significantly inhibited S-(+)-fenfluramine-induced nociceptive behavior. These results suggest that i.t.-administered S-(+)-fenfluramine releases SP through the activation of 5-HT2 receptors subsequent to 5-HT release, and, as a result, produces nociceptive behavior.


Subject(s)
Fenfluramine/pharmacology , Pain/physiopathology , Serotonin/physiology , Spinal Cord/physiopathology , Substance P/physiology , Animals , Male , Mice , Morphine/pharmacology , Pain/chemically induced , Serotonin Agents/pharmacology , Spinal Cord/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...