Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Article in English | MEDLINE | ID: mdl-32984275

ABSTRACT

We isolated the Cobetia sp. strains IU 180733JP01 (5-11-6-3) and 190790JP01 (5-25-4-2) from seaweeds and showed that both strains accumulate poly(3-hydroxybutyrate) [P(3HB)] homopolymer in a nitrogen-limiting mineral salt medium containing alginate as a sole carbon source. Genome sequence analysis of the isolated strains showed that they have putative genes which encode enzymes relevant to alginate assimilation and P(3HB) synthesis, and the putative alginate-assimilating genes formed a cluster. Investigation of the optimum culture conditions for high accumulation of P(3HB) showed that when the 5-11-6-3 strain was cultured in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and 3% (w/v) alginate as a sole carbon source for 2 days, the P(3HB) content and P(3HB) production reached 62.1 ± 3.4 wt% and 3.11 ± 0.16 g/L, respectively. When the 5-25-4-2 strain was cultured in a nitrogen-limiting mineral salt medium (pH 4.0) containing 5% NaCl and 3% (w/v) alginate for 2 days, the P(3HB) content and P(3HB) production reached 56.9 ± 2.1 wt% and 2.67 ± 0.11 g/L, respectively. Moreover, the 5-11-6-3 strain also produced P(3HB) in a nitrogen-limiting mineral salt medium (pH 5.0) containing 6% NaCl and freeze-dried and crushed waste Laminaria sp., which is classified into brown algae and contains alginate abundantly. The resulting P(3HB) content and P(3HB) productivity were 13.5 ± 0.13 wt% and 3.99 ± 0.15 mg/L/h, respectively. Thus, we demonstrated the potential application of the isolated strains to a simple P(3HB) production process from seaweeds without chemical hydrolysis and enzymatic saccharification.

2.
J Biosci Bioeng ; 130(4): 367-373, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32646632

ABSTRACT

Cross hybridization breeding of sake yeasts is hampered by difficulty in acquisition of haploid cells through sporulation. We previously demonstrated that typical sake yeast strains were defective in meiotic chromosome recombination, which caused poor sporulation and loss of spore viability. In this study, we screened a single copy plasmid genomic DNA library of the laboratory Saccharomyces cerevisiae GRF88 for genes that might complement the meiotic recombination defect of UTCAH-3, a strain derived from the sake yeast Kyokai no. 7 (K7). We identified the SPO11 gene of the laboratory strain (ScSPO11), encoding a meiosis-specific endonuclease that catalyzes DNA double-strand breaks required for meiotic recombination, as a gene that restored meiotic recombination and spore viability of UTCAH-3. K7SPO11 could not restore sporulation efficiency and spore viability of UTCAH-3 and a laboratory strain BY4743 spo11Δ/spo11Δ, indicating that K7SPO11 is not functional. Sequence analysis of the SPO11 genes of various Kyokai sake yeasts (K1, and K3-K10) revealed that the K7 group of sake yeasts (K6, K7, K9, and K10) had a mutual missense mutation (C73T) in addition to other three common mutations present in all Kyokai yeasts tested. ScSPO11C73T created through in vitro mutagenesis could not restore spore viability of BY4743 spo11Δ/spo11Δ. On the other hand, K8SPO11, which have the three common mutations except for C73T could restore spore viability of BY4743 spo11Δ/spo11Δ. These results suggest that C73T might be a causative mutation of recombination defect in K7SPO11. Moreover, we found that the introduction of ScRIM15 restored sporulation efficiency but not spore viability.


Subject(s)
Alcoholic Beverages/microbiology , Endodeoxyribonucleases/genetics , Meiosis/genetics , Recombination, Genetic/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Cloning, Molecular , DNA Breaks, Double-Stranded , Mutation , Saccharomyces cerevisiae/cytology
3.
J Biosci Bioeng ; 128(1): 13-21, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30704918

ABSTRACT

We cloned a set of genes encoding alcohol oxidase from Ochrobactrum sp. AIU 033 (OcAOD), which exhibits the appropriate substrate specificity for glyoxylic acid production from glycolic acid. The set of genes for OcAOD contained two open reading frames consisting of 555-bp (aodB) and 1572-bp (aodA) nucleotides, which encode the precursor for the ß-subunit and α-subunit of OcAOD, respectively. We expressed the cloned genes as an active product in Escherichia coli BL21(DE3). The recombinant OcAOD oxidized glycolic acid and primary alcohols with C2-C8 but not glyoxylic acid (as is the case for native OcAOD), whereas the Km and Vmax values for glycolic acid and the pH stability were higher than those of native OcAOD. A consensus sequence for the twin-arginine translocation (Tat) pathway was identified in the N-terminal region of the precursor for the ß-subunit, and the active form of OcAOD was localized in the periplasm of recombinant E. coli, which indicated that OcAOD would be transported from the cytoplasm to the periplasm by the hitchhiker mechanism through the Tat pathway. The OcAOD productivity of the recombinant E. coli was 24-fold higher than that of Ochrobactrum sp. AIU 033, and it was further enhanced by 1.2 times by the co-expression of additional tatABC from E. coli BL21(DE3). Our findings thus suggest a function of the ß-subunit of OcAOD in membrane translocation, and that the recombinant OcAOD has characteristics that are suitable for the enzymatic synthesis of glyoxylic acid as well as native OcAOD.


Subject(s)
Alcohol Oxidoreductases/genetics , Arginine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Ochrobactrum/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/physiology , Biological Transport/genetics , Cloning, Molecular , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Glyoxylates/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Ochrobactrum/enzymology , Organisms, Genetically Modified , Periplasm/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, DNA
4.
Appl Environ Microbiol ; 85(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30341081

ABSTRACT

Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 (K7) and its relatives carry a homozygous loss-of-function mutation in the RIM15 gene, which encodes a Greatwall family protein kinase. Disruption of RIM15 in nonsake yeast strains leads to improved alcoholic fermentation, indicating that the defect in Rim15p is associated with the enhanced fermentation performance of sake yeast cells. In order to understand how Rim15p mediates fermentation control, we here focused on target-of-rapamycin protein kinase complex 1 (TORC1) and protein phosphatase 2A with the B55δ regulatory subunit (PP2AB55δ), complexes that are known to act upstream and downstream of Rim15p, respectively. Several lines of evidence, including our previous transcriptomic analysis data, suggested enhanced TORC1 signaling in sake yeast cells during sake fermentation. Fermentation tests of the TORC1-related mutants using a laboratory strain revealed that TORC1 signaling positively regulates the initial fermentation rate in a Rim15p-dependent manner. Deletion of the CDC55 gene, encoding B55δ, abolished the high fermentation performance of Rim15p-deficient laboratory yeast and sake yeast cells, indicating that PP2AB55δ mediates the fermentation control by TORC1 and Rim15p. The TORC1-Greatwall-PP2AB55δ pathway similarly affected the fermentation rate in the fission yeast Schizosaccharomyces pombe, strongly suggesting that the evolutionarily conserved pathway governs alcoholic fermentation in yeasts. It is likely that elevated PP2AB55δ activity accounts for the high fermentation performance of sake yeast cells. Heterozygous loss-of-function mutations in CDC55 found in K7-related sake strains may indicate that the Rim15p-deficient phenotypes are disadvantageous to cell survival.IMPORTANCE The biochemical processes and enzymes responsible for glycolysis and alcoholic fermentation by the yeast S. cerevisiae have long been the subject of scientific research. Nevertheless, the factors determining fermentation performance in vivo are not fully understood. As a result, the industrial breeding of yeast strains has required empirical characterization of fermentation by screening numerous mutants through laborious fermentation tests. To establish a rational and efficient breeding strategy, key regulators of alcoholic fermentation need to be identified. In the present study, we focused on how sake yeast strains of S. cerevisiae have acquired high alcoholic fermentation performance. Our findings provide a rational molecular basis to design yeast strains with optimal fermentation performance for production of alcoholic beverages and bioethanol. In addition, as the evolutionarily conserved TORC1-Greatwall-PP2AB55δ pathway plays a major role in the glycolytic control, our work may contribute to research on carbohydrate metabolism in higher eukaryotes.


Subject(s)
Cell Cycle Proteins/genetics , Ethanol/metabolism , Nutrients/metabolism , Protein Kinases/genetics , Protein Phosphatase 2/genetics , Proton Pumps/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/physiology , Signal Transduction , Alcoholic Beverages/analysis , Cell Cycle Proteins/metabolism , Fermentation , Protein Kinases/metabolism , Protein Phosphatase 2/metabolism , Proton Pumps/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
5.
J Biosci Bioeng ; 127(2): 190-196, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30181034

ABSTRACT

Sake yeast strains are classified into Saccharomyces cerevisiae and have a heterothallic life cycle. This feature allows cross hybridization between two haploids to breed new strains with superior characteristics. However, cross hybridization of sake yeast is very difficult because only a few spores develop in a sporulation medium, and most of these spores do not germinate. We hypothesized that these features are attributable to chromosome recombination defect in meiosis, which leads to chromosome loss. To test this hypothesis, we examined meiotic recombination of sake yeast Kyokai no. 7 (K7) using the following three methods: (i) analysis of the segregation patterns of two heterozygous sites in the same chromosome in 100 haploid K7 strains; (ii) sequencing of the whole genomes of four haploid K7 strains and comparison of the bases derived from the heterozygosities; and (iii) construction of double heterozygous disruptants of CAN1 and URA3 on the chromosome V of K7 and the examination of the genotypes of haploids after sporulation. We could not detect any recombinant segregants in any of the experiments, which indicated defect in meiotic recombination in K7. Analyses after sporulation of the same double heterozygous disruptants of K6, K9, and K10 also indicated meiotic recombination defect in these strains. Although rapamycin treatment increased the sporulation efficiency of K7, it did not increase the meiotic recombination of the double heterozygous K7. Moreover, the spo13 disruptant of the K7 derivative produced two spore asci without meiotic recombination. These results suggest that sake yeasts have defects in meiotic recombination machinery.


Subject(s)
Alcoholic Beverages/microbiology , Meiosis/genetics , Mutation , Recombination, Genetic/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Transport Systems, Basic/genetics , Chromosomes, Fungal/genetics , Haploidy , Organisms, Genetically Modified , Recombinational DNA Repair/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Analysis, DNA , Spores, Fungal/genetics
6.
Yeast ; 34(12): 483-494, 2017 12.
Article in English | MEDLINE | ID: mdl-28810289

ABSTRACT

The basidiomycetous yeast Pseudozyma antarctica is a remarkable producer of industrially valuable enzymes and extracellular glycolipids. In this study, we developed a method for targeted gene replacement in P. antarctica. In addition, transformation conditions were optimized using lithium acetate, single-stranded carrier DNA and polyethylene glycol (lithium acetate treatment), generally used for ascomycetous yeast transformation. In the rice-derived P. antarctica strain GB-4(0), PaURA3, a homologue of the Saccharomyces cerevisiae orotidine-5'-phosphate decarboxylase gene (URA3), was selected as the target locus. A disruption cassette was constructed by linking the nouseothricine resistance gene (natMX4) to homologous DNA fragments of PaURA3, then electroporated into the strain GB-4(0). We obtained strain PGB015 as one of the PaURA3 disruptants (Paura3Δ::natMX4). Then the PCR-amplified PaURA3 fragment was introduced into PGB015, and growth of transformant colonies but not background colonies was observed on selective media lacking uracil. The complementation of uracil-auxotrophy in PGB015 by introduction of PaURA3 was also performed using lithium acetate treatment, which resulted in a transformation efficiency of 985 CFU/6.8 µg DNA and a gene-targeting ratio of two among 30 transformants. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Acetates/pharmacology , Fungal Proteins/genetics , Targeted Gene Repair/methods , Transformation, Genetic , Ustilaginales/genetics , Amino Acid Sequence , DNA, Fungal/genetics , Drug Resistance, Fungal/genetics , Electroporation , Hot Temperature , Orotic Acid/analogs & derivatives , Orotic Acid/pharmacology , Orotidine-5'-Phosphate Decarboxylase/chemistry , Orotidine-5'-Phosphate Decarboxylase/genetics , Plasmids/genetics , Streptothricins/pharmacology , Trees/microbiology , Ustilaginales/drug effects , Ustilaginales/growth & development
7.
G3 (Bethesda) ; 7(8): 2807-2820, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28642365

ABSTRACT

Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomycescerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies.


Subject(s)
Cell Differentiation , Cell Lineage , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/growth & development , Breeding , Geography , Mutation/genetics , Phenotype , Quantitative Trait, Heritable , Saccharomyces cerevisiae/genetics
8.
J Biosci Bioeng ; 123(1): 8-14, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27567046

ABSTRACT

Sake yeasts are ideally suited for sake making, producing higher levels of ethanol, proliferating at lower temperatures, and producing greater levels of various aromatic components and nutrients than laboratory yeasts. To elucidate the mechanism underlying S-adenosylmethionine (SAM) accumulation in sake yeast strains compared with that in laboratory yeast strains, we performed quantitative trait locus (QTL) analysis and identified a significant QTL on chromosome VIII. Of the 165 genes mapped at 49.8 cM from the left-end DNA marker of chromosome VIII, we focused on the YHR032W/ERC1 gene, encoding a member of the multi-drug and toxin extrusion family having antiporter activity and involved in SAM accumulation and ethionine resistance. Expression of the sake yeast ERC1 haplotype (K7ERC1) in a low- and high-copy number plasmid BYΔerc1 resulted in intracellular SAM accumulation, whereas expression of the laboratory yeast ERC1 haplotype (XERC1) did not. Comparison between DNA sequences of K7ERC1 and XERC1 revealed three amino acid substitutions: S51N, V263I, and N545I. Site-directed mutagenesis revealed that the N545I frameshift mutation was responsible for the K7ERC1 phenotype. These results indicate that K7ERC1 contributes to SAM accumulation in sake yeast strains.


Subject(s)
Haplotypes , S-Adenosylmethionine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Intracellular Space/metabolism , Quantitative Trait Loci/genetics , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics
9.
Biosci Biotechnol Biochem ; 80(8): 1657-62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27191586

ABSTRACT

In high-quality sake brewing, the cerulenin-resistant sake yeast K1801 with high ethyl caproate-producing ability has been used widely; however, K1801 has a defective spindle assembly checkpoint (SAC). To identify the mutation causing this defect, we first searched for sake yeasts with a SAC-defect like K1801 and found that K13 had such a defect. Then, we searched for a common SNP in only K1801 and K13 by examining 15 checkpoint-related genes in 23 sake yeasts, and found 1 mutation, R48P of Cdc55, the PP2A regulatory B subunit that is important for the SAC. Furthermore, we confirmed that the Cdc55-R48P mutation was responsible for the SAC-defect in K1801 by molecular genetic analyses. Morphological analysis indicated that this mutation caused a high cell morphological variation. But this mutation did not affect the excellent brewing properties of K1801. Thus, this mutation is a target for breeding of a new risk-free K1801 with normal checkpoint integrity.


Subject(s)
Alcoholic Beverages , Caproates/metabolism , Cell Cycle Proteins/genetics , Ethanol/metabolism , M Phase Cell Cycle Checkpoints , Mutation , Protein Phosphatase 2/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Base Sequence , Cell Cycle Proteins/metabolism , Fermentation , Food Technology , Gene Expression , Humans , Japan , Odorants , Oryza/chemistry , Polymorphism, Single Nucleotide , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Selection, Genetic
10.
Appl Environ Microbiol ; 82(1): 340-51, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26497456

ABSTRACT

The high fermentation rate of Saccharomyces cerevisiae sake yeast strains is attributable to a loss-of-function mutation in the RIM15 gene, which encodes a Greatwall-family protein kinase that is conserved among eukaryotes. In the present study, we performed intracellular metabolic profiling analysis and revealed that deletion of the RIM15 gene in a laboratory strain impaired glucose-anabolic pathways through the synthesis of UDP-glucose (UDPG). Although Rim15p is required for the synthesis of trehalose and glycogen from UDPG upon entry of cells into the quiescent state, we found that Rim15p is also essential for the accumulation of cell wall ß-glucans, which are also anabolic products of UDPG. Furthermore, the impairment of UDPG or 1,3-ß-glucan synthesis contributed to an increase in the fermentation rate. Transcriptional induction of PGM2 (phosphoglucomutase) and UGP1 (UDPG pyrophosphorylase) was impaired in Rim15p-deficient cells in the early stage of fermentation. These findings demonstrate that the decreased anabolism of glucose into UDPG and 1,3-ß-glucan triggered by a defect in the Rim15p-mediated upregulation of PGM2 and UGP1 redirects the glucose flux into glycolysis. Consistent with this, sake yeast strains with defective Rim15p exhibited impaired expression of PGM2 and UGP1 and decreased levels of ß-glucans, trehalose, and glycogen during sake fermentation. We also identified a sake yeast-specific mutation in the glycogen synthesis-associated glycogenin gene GLG2, supporting the conclusion that the glucose-anabolic pathway is impaired in sake yeast. These findings demonstrate that downregulation of the UDPG synthesis pathway is a key mechanism accelerating alcoholic fermentation in industrially utilized S. cerevisiae sake strains.


Subject(s)
Biosynthetic Pathways/genetics , Fermentation , Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Alcoholic Beverages/microbiology , Biosynthetic Pathways/physiology , Cell Wall , Down-Regulation , Ethanol/metabolism , Glucose/metabolism , Glycogen/metabolism , Protein Kinases/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Trehalose/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Up-Regulation , Uridine Diphosphate Glucose/biosynthesis , beta-Glucans/metabolism
11.
Biosci Biotechnol Biochem ; 79(7): 1191-9, 2015.
Article in English | MEDLINE | ID: mdl-25787154

ABSTRACT

In the brewing of high-quality sake such as Daiginjo-shu, the cerulenin-resistant sake yeast strains with high producing ability to the flavor component ethyl caproate have been used widely. Genetic stability of sake yeast would be important for the maintenance of both fermentation properties of yeast and quality of sake. In eukaryotes, checkpoint mechanisms ensure genetic stability. However, the integrity of these mechanisms in sake yeast has not been examined yet. Here, we investigated the checkpoint integrity of sake yeasts, and the results suggested that a currently used cerulenin-resistant sake yeast had a defect in spindle assembly checkpoint (SAC). We also isolated a spontaneous cerulenin-resistant sake yeast FAS2-G1250S mutant, G9CR, which showed both high ethyl caproate-producing ability and integrity/intactness of the checkpoint mechanisms. Further, morphological phenotypic robustness analysis by use of CalMorph supported the genetic stability of G9CR. Finally, we confirmed the high quality of sake from G9CR in an industrial sake brewing setting.


Subject(s)
Alcoholic Beverages/microbiology , Caproates/metabolism , Cerulenin/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Benomyl/pharmacology , Cell Cycle Proteins/genetics , Checkpoint Kinase 2/genetics , Drug Resistance, Fungal , Fatty Acid Synthases/genetics , Fermentation , Food Microbiology/methods , Mutation , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae Proteins/genetics
12.
J Biosci Bioeng ; 119(5): 532-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25454063

ABSTRACT

We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation.


Subject(s)
Alcoholic Beverages/microbiology , Biofilms/growth & development , Cell Wall/metabolism , Lactobacillus plantarum/cytology , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Cell Adhesion , Cell Aggregation , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Lactobacillus plantarum/growth & development , Membrane Proteins/chemistry , Membrane Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
13.
Appl Environ Microbiol ; 81(1): 453-60, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25362059

ABSTRACT

4-Hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone (HEMF) is an important flavor compound that contributes to the sensory properties of many natural products, particularly soy sauce and soybean paste. The compound exhibits a caramel-like aroma and several important physiological activities, such as strong antioxidant activity. HEMF is produced by yeast species in soy sauce manufacturing; however, the enzymes involved in HEMF production remain unknown, hindering efforts to breed yeasts with high-level HEMF production. In this study, we identified high-level HEMF-producing mutants among a Saccharomyces cerevisiae gene deletion mutant collection. Fourteen deletion mutants were screened as high-level HEMF-producing mutants, and the ADH1 gene deletion mutant (adh1Δ) exhibited the maximum HEMF production capacity. Further investigations of the adh1Δ mutant implied that acetaldehyde accumulation contributes to HEMF production, agreeing with previous findings. Therefore, acetaldehyde might be a precursor for HEMF. The ADH1 gene deletion mutant of Zygosaccharomyces rouxii, which is the dominant strain of yeast found during soy sauce fermentation, also produces HEMF effectively, suggesting that acetaldehyde accumulation might be a benchmark for breeding industrial yeasts with excellent HEMF production abilities.


Subject(s)
Furans/metabolism , Gene Deletion , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Acetaldehyde/metabolism , Alcohol Dehydrogenase/deficiency , Antioxidants/metabolism , Flavoring Agents/metabolism , Mass Screening , Saccharomyces cerevisiae Proteins
14.
AMB Express ; 3(1): 74, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24373204

ABSTRACT

Bacterial contamination is known as a major cause of the reduction in ethanol yield during bioethanol production by Saccharomyces cerevisiae. Acetate is an effective agent for the prevention of bacterial contamination, but it negatively affects the fermentation ability of S. cerevisiae. We have proposed that the combined use of organic acids including acetate and lactate and yeast strains tolerant to organic acids may be effective for the elimination of principally lactic acid bacterial (LAB) contamination. In a previous study employing laboratory S. cerevisiae strains, we showed that overexpression of the HAA1 gene, which encodes a transcriptional activator, could be a useful molecular breeding method for acetate-tolerant yeast strains. In the present study, we constructed a HAA1-overexpressing diploid strain (MATa/α, named ER HAA1-OP) derived from the industrial bioethanol strain Ethanol Red (ER). ER HAA1-OP showed tolerance not only to acetate but also to lactate, and this tolerance was dependent on the increased expression of HAA1 gene. The ethanol production ability of ER HAA1-OP was almost equivalent to that of the parent strain during the bioethanol production process from sugarcane molasses in the absence of acetate. The addition of acetate at 0.5% (w/v, pH 4.5) inhibited the fermentation ability of the parent strain, but such an inhibition was not observed in the ethanol production process using ER HAA1-OP.

15.
Biosci Biotechnol Biochem ; 77(11): 2255-62, 2013.
Article in English | MEDLINE | ID: mdl-24200791

ABSTRACT

Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.


Subject(s)
DNA-Binding Proteins/genetics , Ethanol/metabolism , Gene Expression Regulation, Fungal , Glucose/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Amino Acid Sequence , Base Sequence , DNA-Binding Proteins/deficiency , Fermentation , Gene Deletion , Gene Expression Profiling , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phosphoproteins , Saccharomyces cerevisiae/metabolism , Trans-Activators/deficiency , Transcription Factors/deficiency
16.
J Gen Appl Microbiol ; 59(3): 227-38, 2013.
Article in English | MEDLINE | ID: mdl-23863293

ABSTRACT

Because of the growing market for sports drinks, prevention of yeast contamination of these beverages is of significant concern. This research was performed to achieve insight into the physiology of yeast growing in sports drinks through a genome-wide approach to prevent microbial spoilage of sports drinks. The genome-wide gene expression profile of Saccharomyces cerevisiae growing in the representative sports drink was investigated. Genes that were relevant to sulphate ion starvation response were upregulated in the yeast cells growing in the drink. These results suggest that yeast cells are suffering from deficiency of extracellular sulphate ions during growth in the sports drink. Indeed, the concentration of sulphate ions was far lower in the sports drink than in a medium that allows the optimal growth of yeast. To prove the starvation of sulphate ions of yeast, several ions were added to the beverage and its effects were investigated. The addition of sulphate ions, but not chloride ions or sodium ions, to the beverage stimulated yeast growth in the beverage in a dose-dependent manner. Moreover, the addition of sulphate ions to the sports drink increased the biosynthesis of sulphur-containing amino acids in yeast cells and hydrogen sulphide in the beverage. These results indicate that sulphate ion concentration should be regulated to prevent microbial spoilage of sports drinks.


Subject(s)
Energy Drinks/microbiology , Gene Expression Profiling , Genome, Fungal , Ions/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sulfates/metabolism , Hydrogen Sulfide/metabolism , Saccharomyces cerevisiae/growth & development
17.
J Biosci Bioeng ; 116(5): 591-4, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23757382

ABSTRACT

Inherited loss-of-function mutations in the Rim15p-mediated stress-response pathway contribute to the high fermentation rate of sake yeast strains. In the present study, we found that disruption of the RIM15 gene in ethanol-producing Saccharomyces cerevisiae strain PE-2 accelerated molasses fermentation through enhanced sucrose utilization following glucose starvation.


Subject(s)
Fermentation , Molasses/microbiology , Saccharomyces cerevisiae/metabolism , Sucrose/metabolism , Alcoholic Beverages/microbiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ethanol/metabolism , Glucose/deficiency , Glucose/metabolism , Protein Kinases/deficiency , Protein Kinases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
18.
J Biosci Bioeng ; 116(3): 340-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23583500

ABSTRACT

Using rice grains contaminated with radioactive cesium ((134)Cs and (137)Cs) that was released by the Fukushima Daiichi Nuclear Power Plant Accident in March of 2011, we investigated the behaviors of the radioactive cesium and potassium (total K and (40)K) during sake brewing. Cesiumis a congener of K, and yeast cells have the ability to take up Cs using known K transporters. During rice polishing, the concentrations of radioactive Cs and K in the polished rice grains decreased gradually until a milling ratio (polished rice weight/brown rice weight) of 70% was reached. No significant changes were observed below this milling ratio. Sake was brewed on a small scale using the 70% polished rice. The transfer ratio of radioactive Cs to sake and to the sake cake was significantly different than the ratio of K. Approximately 36% and 23% of radioactive Cs in the polished rice was transferred to the sake and sake cake, respectively; however, 40% was removed by washing and steeping the rice grains. On the other hand, 25% and 40% of K in the polished rice was recovered in the sake and sake cake, respectively, and 35% was removed by washing and steeping the rice grains. From the present results, the concentration of radioactive Cs in sake would be 4 Bq/kg fresh weight, which is well below the regulation values (100 Bq/kg), even using brown rice containing 100 Bq/kg of radioactive Cs.


Subject(s)
Alcoholic Beverages/analysis , Cesium Radioisotopes/analysis , Food Contamination/analysis , Oryza/chemistry , Potassium Radioisotopes/analysis , Cesium/analysis , Food Contamination/prevention & control , Food Handling/methods , Fukushima Nuclear Accident , Japan , Potassium/analysis , Radiation Monitoring
19.
J Biosci Bioeng ; 114(6): 600-5, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22857899

ABSTRACT

Possible contamination by radioactive cesium (Cs), released by the Fukushima Daiichi Nuclear Plant Accident in Japan on March 2011, has been a matter of concern with respect to Japanese sake made from rice grains cultivated in affected fields. In this study, the behavior of stable (133)Cs, which is a useful analogue for predicting the behavior of radioactive Cs, was investigated in the production of sake using rice grains harvested in Japan in 2010. The concentration of stable (133)Cs in the polished rice grains decreased gradually with decreasing milling ratios until a ratio of 70% was reached, and below that point, it did not change significantly. The (133)Cs concentration in the 70% polished rice was approximately 20% of that found in brown rice. The sake was brewed on a small scale using 70% polished rice, and the transfer of (133)Cs from rice to sake was examined. Approximately 30-40% of (133)Cs in the 70% polished rice was removed during the washing and the steeping of the rice grains, and approximately 40% of the (133)Cs in the 70% polished rice was transferred to the sake. If the radioactive Cs species behaves similarly, these results suggest that brown rice containing 100 Bq/kg radioactivity of Cs would generate 70% polished rice grains containing 20 Bq/kg and that the sake brewed from these grains would contain 3-5 Bq/kg.


Subject(s)
Cesium Isotopes/analysis , Cesium Radioisotopes/analysis , Food Contamination/analysis , Food Contamination/prevention & control , Food Handling , Oryza/metabolism , Wine/analysis , Cesium Isotopes/metabolism , Crops, Agricultural/chemistry , Crops, Agricultural/metabolism , Food Handling/methods , Food-Processing Industry/methods , Fukushima Nuclear Accident , Japan , Oryza/chemistry
20.
Appl Environ Microbiol ; 78(19): 6996-7002, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22843525

ABSTRACT

WYK-1 is a dipeptidyl peptidase IV inhibitor produced by Aspergillus oryzae strain AO-1. Because WYK-1 is an isoquinoline derivative consisting of three l-amino acids, we hypothesized that a nonribosomal peptide synthetase was involved in its biosynthesis. We identified 28 nonribosomal peptide synthetase genes in the sequenced genome of A. oryzae RIB40. These genes were also identified in AO-1. Among them, AO090001000009 (wykN) was specifically expressed under WYK-1-producing conditions in AO-1. Therefore, we constructed wykN gene disruptants of AO-1 after nonhomologous recombination was suppressed by RNA interference to promote homologous recombination. Our results demonstrated that the disruptants did not produce WYK-1. Furthermore, the expression patterns of 10 genes downstream of wykN were similar to the expression pattern of wykN under several conditions. Additionally, homology searches revealed that some of these genes were predicted to be involved in WYK-1 biosynthesis. Therefore, we propose that wykN and the 10 genes identified in this study constitute the WYK-1 biosynthetic gene cluster.


Subject(s)
Aspergillus oryzae/enzymology , Aspergillus oryzae/metabolism , Dipeptidyl Peptidase 4/metabolism , Enzyme Inhibitors/metabolism , Isoquinolines/metabolism , Peptide Synthases/metabolism , Aspergillus oryzae/genetics , Biosynthetic Pathways/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , Gene Deletion , Molecular Sequence Data , Multigene Family , Peptide Synthases/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...