Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830808

ABSTRACT

Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum ß-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.


Subject(s)
Aeromonas hydrophila , Flagellin , Gram-Negative Bacterial Infections , Polymerase Chain Reaction , Aeromonas hydrophila/genetics , Aeromonas hydrophila/drug effects , Aeromonas hydrophila/isolation & purification , Humans , Gram-Negative Bacterial Infections/microbiology , Polymerase Chain Reaction/methods , Flagellin/genetics , Aeromonas veronii/genetics , Aeromonas veronii/isolation & purification , Aeromonas veronii/drug effects , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Environmental Microbiology
2.
Environ Sci Pollut Res Int ; 30(5): 11740-11754, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36098923

ABSTRACT

The flagellin A gene (flaA) sequences, swimming motility, and biofilm forming ability were investigated in order to reveal the genetic and functional differences of flagella between clinical and environmental isolates of Aeromonas species. Twenty-eight clinical and 48 environmental strains of Aeromonas species isolated in Okinawa Prefecture of Japan were used in this study. The full-length flaA genes of these strains were sequenced and aligned, and a phylogenetic tree was constructed. In addition, swimming motility and biofilm forming ability were evaluated by conventional methods. Aeromonas veronii biovar sobria and A. hydrophila clearly divided into clinical and environmental strain clusters in the flaA phylogenetic classification, and the six and 13 specific amino acids respectively, of FlaA of both species were different in clinical and environmental strains. Furthermore, the flaA size of the clinical strain of A. veronii bv. sobria was mainly 909, 924, and 939 bp, and the size of A. hydrophila was 909 bp. The swimming motility of clinical isolates of both species was lower than the environmental isolates; however, the biofilm forming ability of the clinical isolates was high. Thus, the clinical isolates of A. veronii bv. sobria and A. hydrophila had different genetic and functional characteristics of flagellin than the environmental isolates. The characteristics of flagellin could serve as indicators to distinguish between clinical and environmental isolates of the both species. It may contribute to diagnosis of these diseases and the monitoring of clinical strain invasion into the natural environment.


Subject(s)
Aeromonas , Aeromonas/genetics , Flagellin/genetics , Flagellin/metabolism , Swimming , Phylogeny , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...