Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(7): 2490-2495, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36944354

ABSTRACT

Optically induced GHz-THz guided acoustic waves have been intensively studied because of the potential to realize noninvasive and noncontact material inspection. Although the generation of photoinduced guided acoustic waves utilizing nanostructures, such as ultrathin plates, nanowires, and materials interfaces, is being established, experimental characterization of these acoustic waves in consideration of the finite size effect has been difficult due to the lack of experimental methods with nm × ps resolution. Here we experimentally observe the sub-micrometer guided acoustic waves in a nanofabricated ultrathin silicon plate by ultrafast transmission electron microscopy with nm × ps precision. We successfully characterize the excited guided acoustic wave in frequency-wavenumber space by applying Fourier-transformation analysis on the bright-field movie. These results suggest the great potential of ultrafast transmission electron microscopy to characterize the acoustic modes realized in various nanostructures.

2.
Sci Adv ; 7(25)2021 Jun.
Article in English | MEDLINE | ID: mdl-34134977

ABSTRACT

Magnetic skyrmions are self-organized topological spin textures that behave like particles. Because of their fast creation and typically long lifetime, experimental verification of skyrmion's creation/annihilation processes has been challenging. Here, we successfully track skyrmion dynamics in defect-introduced Co9Zn9Mn2 by using pump-probe Lorentz transmission electron microscope. Following the nanosecond photothermal excitation, we resolve 160-nm skyrmion's proliferation at <1 ns, contraction at 5 ns, drift from 10 ns to 4 µs, and coalescence at ~5 µs. These motions relay the multiscale arrangement and relaxation of skyrmion clusters in a repeatable cycle of 20 kHz. Such repeatable dynamics of skyrmions, arising from the weakened but still persistent topological protection around defects, enables us to visualize the whole life of the skyrmions and demonstrates the possible high-frequency manipulations of topological charges brought by skyrmions.

3.
Nano Lett ; 20(7): 4932-4938, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32463678

ABSTRACT

The control of acoustic phonons, which are the carriers of sound and heat, has become the focus of increasing attention because of a demand for manipulating the sonic and thermal properties of nanometric devices. In particular, the photoacoustic effect using ultrafast optical pulses has a promising potential for the optical manipulation of phonons in the picosecond time regime. So far, its mechanism has been mostly based on the commonplace thermoelastic expansion in isotropic media, which has limited applicability. In this study, we investigate a conceptually new mechanism of the photoacoustic effect involving a structural instability that utilizes a transition-metal dichalcogenide VTe2 with a ribbon-type charge-density-wave (CDW). Ultrafast electron microscope imaging and diffraction measurements reveal the generation and propagation of unusual acoustic waves in a nanometric thin plate associated with optically induced instantaneous CDW dissolution. Our results highlight the capability of photoinduced structural instabilities as a source of coherent acoustic waves.

4.
Sci Adv ; 4(7): eaar3867, 2018 07.
Article in English | MEDLINE | ID: mdl-30062122

ABSTRACT

The observation and control of interweaving spin, charge, orbital, and structural degrees of freedom in materials on ultrafast time scales reveal exotic quantum phenomena and enable new active forms of nanotechnology. Bonding is the prime example of the relation between electronic and nuclear degrees of freedom. We report direct evidence illustrating that photoexcitation can be used for ultrafast control of the breaking and recovery of bonds in solids on unprecedented time scales, near the limit for nuclear motions. We describe experimental and theoretical studies of IrTe2 using femtosecond electron diffraction and density functional theory to investigate bonding instability. Ir-Ir dimerization shows an unexpected fast dissociation and recovery due to the filling of the antibonding dxy orbital. Bond length changes of 20% in IrTe2 are achieved by effectively addressing the bonds directly through this relaxation process. These results could pave the way to ultrafast switching between metastable structures by photoinduced manipulation of the relative degree of bonding in this manner.

5.
Nat Commun ; 9(1): 282, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348671

ABSTRACT

The structure of the superconducting gap in unconventional superconductors holds a key to understand the momentum-dependent pairing interactions. In superconducting FeSe, there have been controversial results reporting nodal and nodeless gap structures, raising a fundamental issue of pairing mechanisms of iron-based superconductivity. Here, by utilizing polarization-dependent laser-excited angle-resolved photoemission spectroscopy, we report a detailed momentum dependence of the gap in single- and multi-domain regions of orthorhombic FeSe crystals. We confirm that the superconducting gap has a twofold in-plane anisotropy, associated with the nematicity due to orbital ordering. In twinned regions, we clearly find finite gap minima near the vertices of the major axis of the elliptical zone-centered Fermi surface, indicating a nodeless state. In contrast, the single-domain gap drops steeply to zero in a narrow angle range, evidencing for nascent nodes. Such unusual node lifting in multi-domain regions can be explained by the nematicity-induced time-reversal symmetry breaking near the twin boundaries.

6.
Sci Adv ; 3(8): e1700466, 2017 08.
Article in English | MEDLINE | ID: mdl-28875162

ABSTRACT

A major problem in the field of high-transition temperature (Tc) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba1-x K x Fe2As2. We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high-Tc superconductivity in the iron-based superconductors.

7.
J Am Chem Soc ; 136(41): 14357-60, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25251306

ABSTRACT

A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 10(2) S cm(-1), which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842).

8.
Biochem Biophys Res Commun ; 350(2): 339-44, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17010317

ABSTRACT

Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNgamma)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNgamma-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNgamma-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNgamma-induced STAT1 activation; however, constitutive nuclear factor kappaB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNgamma-inducible gene expression without inhibiting STAT1 activation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chemokines, CXC/genetics , Interferon-gamma/antagonists & inhibitors , Macrophages/drug effects , Sulindac/pharmacology , Animals , Cell Line , Chemokine CXCL9 , Chemokines, CXC/biosynthesis , Down-Regulation , Macrophages/immunology , Mice , NF-kappa B/metabolism , Promoter Regions, Genetic , RNA, Messenger/metabolism , STAT1 Transcription Factor/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...