Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396539

ABSTRACT

This study investigates the non-invasive monitoring of the endocrine ovarian activities of captive female golden takins (Budorcas taxicolor bedfordi) based on long-term fecal sex steroid hormone metabolite dynamics. Fecal progesterone (P4) metabolite dynamics were monitored in nine females for 0.5-15 years between 2004 and 2022. Fecal estradiol-17ß (E2) and estrone (E1) metabolites were measured during certain estrous cycles, and fecal E1 metabolite concentrations were measured during all gestation periods. The breeding season of the captive animals was mainly between May and December, and they were polyestrous animals whose breeding season begins during the long-day period. The onset of the breeding season occurred slightly earlier as age increased. The mean age (±SD) at puberty based on fecal P4 metabolite dynamics was 4.1 ± 2.9 years. The first conception ages ranged from 2.3-10.2 years. The mean estrous cycle period (±SEM) was 25.4 ± 1.1 days, and mounting and mating occurred in periods of low fecal P4 metabolite levels during the breeding season. The mean gestation period (±SD) from the estimated mating date to the calving date was 253.9 ± 5.7 days, and the fecal P4 metabolite distribution during pregnancy was bimodal. Fecal estrone metabolite levels gradually increased 21 weeks before delivery, peaked during the week of delivery, and then markedly decreased in the first week after delivery. Estrus resumed in the first April-August period after delivery (mean ± SD; 103.5 ± 40.9 days) or in May of the year after delivery (421.0 ± 16.5 days). This study revealed that the estrous cycle and pregnancy of female golden takins can be determined by fecal progesterone metabolite dynamics and that fecal estrone metabolite dynamics increases toward parturition and are useful for predicting the date of delivery. This endocrinological information is important for planned breeding efforts for the golden takins.

2.
Med Biol Eng Comput ; 55(1): 79-88, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27106752

ABSTRACT

Pressure ulcers occur following sustained occlusion of microvessels at bony prominences under skin surface pressure (SSP). However, the mechanical conditions of the surrounding soft tissue leading to microvascular occlusion are not fully understood. This study determined the stiffness of homogenized skin with microvasculature at the sacrum that occludes microvessels at an SSP of 10 kPa (consistent with a standard mattress) and recovers from occlusion at 5 kPa (consistent with a pressure-redistribution mattress). We conducted two-dimensional finite element analyses under plane stress and plane strain conditions to determine the stiffness of the skin. The results for plane stress conditions show that the microvessel was occluded with a Young's modulus of 23 kPa in response to an SSP of 10 kPa at the center of the sacrum and that the circulation recovered following a reduction in the SSP to 5 kPa. The resulting Young's modulus is consistent with reported data. Our study indicates that the critical value of the SSP for microvascular occlusion is determined not only by the stiffness of homogenized skin with microvasculature but also by the intraluminal pressure, microvascular wall stiffness, and body support conditions.


Subject(s)
Finite Element Analysis , Microvessels/pathology , Pressure , Sacrum/pathology , Skin/blood supply , Skin/pathology , Compressive Strength , Elastic Modulus , Humans , Pressure Ulcer , Stress, Mechanical
3.
Nucleic Acids Res ; 35(20): e134, 2007.
Article in English | MEDLINE | ID: mdl-17940089

ABSTRACT

Biochemical network maps are helpful for understanding the mechanism of how a collection of biochemical reactions generate particular functions within a cell. We developed a new and computationally feasible notation that enables drawing a wide resolution map from the domain-level reactions to phenomenological events and implemented it as the extended GUI network constructor of CADLIVE (Computer-Aided Design of LIVing systEms). The new notation presents 'Domain expansion' for proteins and RNAs, 'Virtual reaction and nodes' that are responsible for illustrating domain-based interaction and 'InnerLink' that links real complex nodes to virtual nodes to illustrate the exact components of the real complex. A modular box is also presented that packs related reactions as a module or a subnetwork, which gives CADLIVE a capability to draw biochemical maps in a hierarchical modular architecture. Furthermore, we developed a pathway search module for virtual knockout mutants as a built-in application of CADLIVE. This module analyzes gene function in the same way as molecular genetics, which simulates a change in mutant phenotypes or confirms the validity of the network map. The extended CADLIVE with the newly proposed notation is demonstrated to be feasible for computational simulation and analysis.


Subject(s)
Metabolic Networks and Pathways , Software , Animals , Computer Simulation , Mammals , Protein Biosynthesis , Protein Structure, Tertiary , Proteins/chemistry , Proteins/metabolism , RNA/chemistry , RNA/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...