Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Biomater Res ; 27(1): 103, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848974

ABSTRACT

BACKGROUND: Fibrosis plays an important role in both normal physiological and pathological phenomena as fibroblasts differentiate to myofibroblasts. The activation of fibroblasts is determined through interactions with the surrounding extracellular matrix (ECM). However, how this fibroblast-to-myofibroblast transition (FMT) is regulated and affected by elastin concentration in a three-dimensional (3D) microenvironment has not been investigated. METHODS: We developed an insoluble elastin-gradient 3D hydrogel system for long-lasting cell culture and studied the molecular mechanisms of the FMT in embedded cells by nanoflow LC-MS/MS analysis along with validation through real-time PCR and immunofluorescence staining. RESULTS: By optimizing pH and temperature, four 3D hydrogels containing fibroblasts were successfully fabricated having elastin concentrations of 0, 20, 50, and 80% in collagen. At the low elastin level (20%), fibroblast proliferation was significantly increased compared to others, and in particular, the FMT was clearly observed in this condition. Moreover, through mass spectrometry of the hydrogel environment, it was confirmed that differentiation proceeded in two stages. In the early stage, calcium-dependent proteins including calmodulin and S100A4 were highly associated. On the other hand, in the late stage after several passages of cells, distinct markers of myofibroblasts were presented such as morphological changes, increased production of ECM, and increased α-SMA expression. We also demonstrated that the low level of elastin concentration induced some cancer-associated fibroblast (CAF) markers, including PDGFR-ß, and fibrosis-related disease markers, including THY-1. CONCLUSION: Using our developed 3D elastin-gradient hydrogel system, we evaluated the effect of different elastin concentrations on the FMT. The FMT was induced even at a low concentration of elastin with increasing CAF level via calcium signaling. With this system, we were able to analyze varying protein expressions in the overall FMT process over several cellular passages. Our results suggest that the elastin-gradient system employing nonlinear optics imaging provides a good platform to study activated fibroblasts interacting with the microenvironment, where the ECM plays a pivotal role.

2.
Microsc Microanal ; : 1-7, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35676867

ABSTRACT

As the measurement scale shrinks, the reliability of nanoscale measurement is even more crucial for a variety of applications, including semiconductor electronics, optical metamaterials, and sensors. Specifically, it is difficult to measure the nanoscale morphology at the exact location though it is required for novel applications based on hybrid nanostructures combined with 2D materials. Here, we introduce an advanced hybrid positioning system to measure the region of interest with enhanced speed and high precision. A 5-axis positioning stage (XYZ, R, gripper) makes it possible to align the sample within a 10-µm field of view (FOV) in both the scanning electron microscope (SEM) and the atomic force microscope (AFM). The reproducibility of the sample position was investigated by comparing marker patterns and denting points between the SEM and AFM, revealing an accuracy of 6.5 ± 2.1 µm for the x-axis and 4.5 ± 1.7 µm for the y-axis after 12 repetitions. By applying a different measurement process according to the characteristics of 2D materials, various information such as height, length, or roughness about MoTe2 rods and MoS2 film was obtained in the same measurement area. As a consequence, overlaid two images can be obtained for detailed information about 2D materials.

3.
Nanoscale ; 13(10): 5316-5323, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33656502

ABSTRACT

Plasmonic coupling of metallic nanostructures with two-dimensional molybdenum disulfide (MoS2) atomic layers is an important topic because it provides a pathway to manipulate the optoelectronic properties and to overcome the limited optical cross-section of the materials. Plasmonic enhanced light-matter interaction of a MoS2 layer is known to be mainly governed by optical field enhancement and the Purcell effect, while the discrimination of the contribution from each mechanism to the plasmonic enhancement is challenging. Here, we investigate photoluminescence (PL) enhancement from few-layer MoS2 transferred on Au nanostructure arrays with controlled localized surface plasmon resonance (LSPR) spectral positions that were detuned from the excitation wavelengths. Two distinctive regimes in LSPR mode-dependent PL enhancement were revealed showing a maximum enhancement (∼40-fold) with zero detuning and a modest enhancement (∼10-fold) with the red-shift detuned LSPR from the excitation wavelength, which were attributed to LSPR-induced optical field enhancement and the Purcell effect, respectively. By applying the experimental parameters into the Purcell effect formalism, an effective mode volume of ∼0.016λ03 was estimated. Our work provides an insight into how to utilize few-layer MoS2 as a base material for optoelectronics by harnessing Purcell-enhanced optical responsivity.

4.
Nanoscale ; 13(8): 4475-4484, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33595003

ABSTRACT

Fabrication of plasmonic nanostructures in a precise and reliable manner is a topic of huge interest because their structural details significantly affect their plasmonic properties. Herein, we present nanotip indentation lithography (NTIL) based on atomic force microscopy (AFM) indentation for the patterning of plasmonic nanostructures with precisely controlled size and shape. The size of the nanostructures is controlled by varying the indentation force of AFM tips into the mask polymer; while their shapes are determined to be nanodisks (NDs) or nanotriangles (NTs) depending on the shapes of the AFM tip apex. The localized surface plasmon resonance of the NDs is tailored to cover most of the visible-wavelength regime by controlling their size. The NTs show distinct polarization-dependent plasmon modes consistent with full-wave optical simulations. For the demonstration of the light-matter interaction control capability of NTIL nanostructures, we show that photoluminescence enhancement from MoS2 layers can be deliberately controlled by tuning the size of the nanostructures. Our results pave the way for the AFM-indentation-based fabrication of plasmonic nanostructures with a highly precise size and shape controllability and reproducibility.

5.
ACS Appl Mater Interfaces ; 12(52): 57881-57887, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33332084

ABSTRACT

A highly crystalline pomegranate-like base-acid bifunctional beta zeolite was successfully synthesized by the steam-assisted crystallization method using a basic nitrided N-beta as the starting material. The secondary crystal growth of a beta zeolite generating acid functionality occurred over the outer surface and intercrystalline void spaces of the N-beta zeolite. The pomegranate-like N-beta@H-beta zeolite had a high surface area and base-acid dual functionality because of the well-connected framework topologies of the H-beta and N-beta crystallites. The N-beta@H-beta zeolite exhibited a superior yield of benzylidenemalononitrile during the tandem deacetalization-Knoevenagel condensation of benzaldehyde dimethyl acetal and malononitrile compared to H-beta, N-beta, and their physical mixture. This is likely due to the isolated and balanced activity of the base- and acid-catalyzed reactions.

6.
ACS Appl Mater Interfaces ; 12(36): 40518-40524, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32808524

ABSTRACT

Ternary alloys in two-dimensional (2D) transition-metal dichalcogenides allow band gap tuning and phase engineering and change the electrical transport type. A process of 2D van der Waals epitaxial growth of molybdenum sulfide telluride alloys (MoS2xTe2(1-x), 0 ≤ x ≤ 1) is presented for synthesizing few-atomic-layer films on SiO2 substrates using metal-organic chemical vapor deposition. Raman spectra, X-ray photoelectron spectra, photoluminescence (PL), and electrical transport properties of few-atomic-layer MoS2xTe2(1-x) (0 ≤ x ≤ 1) films are systematically investigated. The strong PL peaks at 80 K from MoS2xTe2(1-x) (0.45 ≤ x ≤ 0.93) reveal a composition-controllable optical band gap (Eg = 1.55-1.91 eV at 80 K). Electrical transport properties of MoS2xTe2(1-x) alloys, where 0 ≤ x ≤ 0.8 and 0.93 ≤ x ≤ 1, exhibit p-type and n-type semiconducting behaviors, respectively. Remarkably, an increase in the Te composition of a few-atomic-layer MoS2xTe2(1-x) (0 ≤ x ≤ 1) film left-shifts the threshold voltage of a MoS2xTe2(1-x) (0 ≤ x ≤ 1) field-effect transistor. The narrower band gap energies of MoS2xTe2(1-x) films with higher Te content cause a decrease in the on/off current ratios.

7.
Sci Rep ; 9(1): 1018, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30705294

ABSTRACT

In current nanoscale semiconductor fabrications, high dielectric materials and ultrathin multilayers have been selected to improve the performance of the devices. Thus, interface effects between films and the quantification of surface information are becoming key issues for determining the performance of the semiconductor devices. In this paper, we developed an easy, accurate, and nondestructive diagnosis to investigate the interface effect of hafnium oxide ultrathin films. A roughness scaling method that artificially modified silicon surfaces with a maximum peak-to-valley roughness range of a few nanometers was introduced to examine the effect on the underlayer roughness. The critical overlayer roughness was be defined by the transition of RMS roughness which was 0.18 nm for the 3 nm thick hafnium oxide film. Subsequently, for the inline diagnostic application of semiconductor fabrication, the roughness of a mass produced hafnium film was investigated. Finally, we confirmed that the result was below the threshold set by our critical roughness. The RMS roughness of the mass produced hafnium oxide film was 0.11 nm at a 500 nm field of view. Therefore, we expect that the quantified and standardized critical roughness managements will contribute to improvement of the production yield.

8.
Ultramicroscopy ; 194: 48-56, 2018 11.
Article in English | MEDLINE | ID: mdl-30071373

ABSTRACT

An independent external stage for low noise atomic force microscope has been developed for mid-range movements so that it aids in measurements of critical dimensions through the low-noise atomic force microscope. The maximum travel length of the external four-axes stage is 10 mm. For image scanning of the specific target region, the sample needs to be moved through two steps: coarse positioning with the external stage and fine positioning with PI XY piezo scanner. Prior to the CD measurements, we confirmed that the position errors caused by the external stage and tip stage were negligible through the reproducibility experiments. In this study, custom-designed software stored the initial position of the probe and then moved it precisely to the sample location to be measured. Subsequently, the sidewalls of an improved vertical parallel structure were measured and the repeatability and reproducibility of the CD measurements were estimated using a CDR30-EBD tip. Finally, we confirmed that tip wear could be minimized by measuring TGX1 samples with undercut structures.

9.
Angew Chem Int Ed Engl ; 57(8): 2091-2095, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29277950

ABSTRACT

The development of energy-conversion devices using water movement has actively progressed. Ionovoltaic devices, which are driven by ion dynamics, show ion specificity by which different ions with identical charges show different output performance. However, the ion specificity remains poorly understood because the influence of the ion species on generated electric signals is not elucidated. The ion specificity in electric signals induced by flowing water droplet was investigated in terms of its relationship with the potential profile across the solid-liquid interface.

10.
Biointerphases ; 12(1): 01A402, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28231713

ABSTRACT

Highly sensitive solution immersed silicon (SIS) biosensors were developed for detection of hepatitis B virus (HBV) infection in the early stage. The ultrasensitivity for overlayer thickness at the nonreflecting condition for the p-polarized wave is the basis of SIS sensing technology. The change in thickness due to biomolecular interactions and change in refractive index of the surrounding buffer medium were assessed simultaneously using two separate ellipsometric parameters (Ψ and Δ), respectively, from a single sensing spot. A direct antigen-antibody affinity assay was used to detect and quantify hepatitis B surface antigen (HBsAg), which is the early stage biomarker for HBV infection. The detection limit of 10 pg/ml was achieved for HBsAg in the human blood serum, which is comparable with the results of enzyme-linked immunosorbent assay and other hybrid assays. The SIS sensor's response time was less than 10 min. The SIS sensors exhibit excellent stability and high signal-to-noise ratio, and are cost-effective, which makes them a suitable candidate for point-of-care applications.


Subject(s)
Biosensing Techniques/methods , Hepatitis B Surface Antigens/blood , Hepatitis B/diagnosis , Point-of-Care Systems , Cost-Benefit Analysis , Humans , Silicon/metabolism , Time Factors
11.
J Nanosci Nanotechnol ; 16(1): 1038-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398566

ABSTRACT

The thermal behavior of silicon nanoparticles (Si NPs) was investigated for the preparation of silicon thin film using a solution process. TEM analysis of Si NPs, synthesized by inductively coupled plasma, revealed that the micro-structure of the Si NPs was amorphous and that the Si NPs had melted and merged at a comparatively low temperature (~750 °C) considering bulk melting temperature of silicon (1414 °C). A silicon ink solution was prepared by dispersing amorphous Si NPs in propylene glycol (PG). It was then coated onto a silicon wafer and a quartz plate to form a thin film. These films were annealed in a vacuum or in an N2 environment to increase their film density. N2 annealing at 800 °C and 1000 °C induced the crystallization of the amorphous thin film. An elemental analysis by the SIMS depth profile showed that N2annealing at 1000 °C for 180 min drastically reduced the concentrations of carbon and oxygen inside the silicon thin film. These results indicate that silicon ink prepared using amorphous Si NPs in PG can serve as a proper means of preparing silicon thin film via solution process.

12.
Endocrinol Metab (Seoul) ; 31(3): 454-461, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27469066

ABSTRACT

BACKGROUND: Despite evidence from animal and clinical studies showing the detrimental effects of macrophage migration inhibitory factor (MIF) on bone metabolism, there are no clinical studies relating circulating MIF levels to osteoporosis-related phenotypes. This cross-sectional study investigated the association of plasma MIF with bone mineral density (BMD), bone turnover markers (BTMs), and prevalence of osteoporosis in postmenopausal Korean women. METHODS: A total of 246 women not taking any medications or diagnosed with any diseases that could affect bone metabolism were enrolled. BMD values at the lumbar spine, femoral neck, and total femur, and blood levels of MIF and BTMs were measured in all subjects. Osteoporosis was defined by World Health Organization criteria. RESULTS: Before and after adjustment for confounding variables, higher MIF levels were significantly associated with lower BMD values at all measured sites and higher levels of all BTMs. All BMD values and BTMs significantly changed in a dose-dependent fashion across increasing MIF quartile. When participants were divided into two groups according to osteoporosis status, postmenopausal women with osteoporosis demonstrated 24.2% higher plasma MIF levels than those without osteoporosis (P=0.041). The odds ratio per each standard deviation increment of MIF levels for prevalent osteoporosis was 1.32 (95% confidence interval, 1.01 to 1.73). CONCLUSION: This study provides the first epidemiological evidence that higher plasma MIF may be associated with higher risk of osteoporosis resulting from lower bone mass and higher bone turnover rate, and thus it could be a potential biomarker of poor bone health outcomes in postmenopausal women.

13.
Angew Chem Int Ed Engl ; 54(32): 9230-4, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26087961

ABSTRACT

To promote the oxygen reduction reaction of metal-free catalysts, the introduction of porous structure is considered as a desirable approach because the structure can enhance mass transport and host many catalytic active sites. However, most of the previous studies reported only half-cell characterization; therefore, studies on membrane electrode assembly (MEA) are still insufficient. Furthermore, the effect of doping-site position in the structure has not been investigated. Here, we report the synthesis of highly active metal-free catalysts in MEAs by controlling pore size and doping-site position. Both influence the accessibility of reactants to doping sites, which affects utilization of doping sites and mass-transport properties. Finally, an N,P-codoped ordered mesoporous carbon with a large pore size and precisely controlled doping-site position showed a remarkable on-set potential and produced 70% of the maximum power density obtained using Pt/C.

14.
Sci Rep ; 3: 2088, 2013.
Article in English | MEDLINE | ID: mdl-23807513

ABSTRACT

We fabricated a novel in-line conductive atomic force microscopy (C-AFM), which can analyze the resistive failures and examine process variance with an exact-positioning capability across the whole wafer scale in in-line DRAM fabrication process. Using this in-line C-AFM, we introduced a new, non-destructive diagnosis for resistive failure in mobile DRAM structures. Specially, we focused on the self-aligned contact (SAC) process, because the failure of the SAC process is one of the dominant factors that induces the degradation of yield performance, and is a physically invisible defect. We successfully suggested the accurate pass mark for resistive-failure screening in the fabrication of SAC structures and established that the cause of SAC failures is the bottom silicon oxide layer. Through the accurate pass mark for the SAC process configured by the in-line C-AFM analyses, we secured a good potential method for preventing the yield loss caused by failures in DRAM fabrication.

15.
J Nanosci Nanotechnol ; 10(1): 195-202, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20352833

ABSTRACT

In the present work, a variety of SAPO-34 catalysts have been prepared using various templates such as a single or mixtures of tetraethylammonium hydroxide (TEAOH), morpholine, diethylamine (DEA), triethylamine (TEA), dipropylamine (DPA), isopropylamine (IPA) and Diethanolamine (DEtA). It is shown that crystal morphology and physicochemical properties were affected by the kinds of templates and mixture contents. Especially, inexpensive SAPO-34 catalyst with good crystal properties and catalytic performance was obtained by using mixed template of DEA and TEAOH. Through N2 isotherm, XRD, SEM, NH3 TPD and 29Si-NMR techniques, the effect of mixed template on the crystal morphology, acidity and Si distribution were investigated. Catalytic activity and life stability of SAPO-34 in MTO reaction was improved by using mixed template because of the distinction of the crystal size, acidity and Si distribution.

16.
Rev Sci Instrum ; 81(3): 035109, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20370215

ABSTRACT

A detection method using a self-sensing cantilever is more desirable than other detection methods (optical fiber and laser beam bounce detection) that are bulky and require alignment. The advantage of the self-sensing cantilever is its simplicity, particularly its simple structure. It can be used for the construction of an atomic force microscopy system with a vacuum, fluids, and a low temperature chamber. Additionally, the self-actuating cantilever can be used for a high speed scanning system because the bandwidth is larger than the bulk scanner. Frequently, ZnO film has been used as an actuator in a self-actuating cantilever. In this paper, we studied the characteristics of the self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit substituting the ZnO film with a lead zirconate titanate (PZT) film as the actuator. We can reduce the leakage current (to less than 10(-4) A/cm(2)) in the PZT cantilever and improve sensor sensitivity through a reduction of noise level from the external sensor circuit using the Wheatstone bridge circuit embedded into the cantilever. The self-sensing and actuating cantilever with an integrated Wheatstone bridge circuit was compared with a commercial self-sensing cantilever or self-sensing and actuating cantilever without an integrated Wheatstone bridge circuit. The measurement results have shown that sensing the signal to noise level and the minimum detectable deflection improved to 4.78 mV and 1.18 nm, respectively. We believe that this cantilever allows for easier system integration and miniaturization, provides better controllability and higher scan speeds, and offers the potential for full automation.

17.
J Am Chem Soc ; 131(36): 13080-92, 2009 Sep 16.
Article in English | MEDLINE | ID: mdl-19694427

ABSTRACT

The titanate quantum wires in ETS-10 crystals remain intact during ion exchange of the pristine cations (Na(+)(0.47) + K(+)(0.53)) with M(n+) ions (M(n+) = Na(+), K(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+)) and during reverse exchange of the newly exchanged cations with Na(+). The binding energies of O(1s) and Ti(2p) decrease as the electronegativity of the cation decreases, and they are inversely proportional to the negative partial charge of the framework oxygen [-delta(O(f))]. At least five different oxygen species were identified, and their binding energies (526.1-531.9 eV) indicate that the titanate-forming oxides are much more basic than those of aluminosilicate zeolites (530.2-533.3 eV), which explains the vulnerability of the quantum wire to acids and oxidants. The chemical shifts of the five NMR-spectroscopically nonequivalent Si sites, delta(I(A)), delta(I(B)), delta(II(A)), delta(II(B)), and delta(III), shift downfield as -delta(O(f)) increases, with slopes of 2.5, 18.6, 133.5, 216.3, and 93.8 ppm/[-delta(O(f))], respectively. The nonuniform responses of the chemical shifts to -delta(O(f)) arise from the phenomenon that the cations in the 12-membered-ring channels shift to the interiors of the cages surrounded by four seven-membered-ring windows. On the basis of the above, we assign delta(I(A)), delta(I(B)), delta(II(A)), and delta(II(B)) to the chemical shifts arising from Si(12,12), Si(12,7), Si(7,12), and Si(7,7) atoms, respectively. The frequency of the longitudinal stretching vibration of the titanate quantum wire increases linearly and the bandwidth decreases nonlinearly with increasing -delta(O(f)), indicating that the titanate quantum wire resembles a metallic carbon nanotube. As the degree of hydration increases, the vibrational frequency shifts linearly to higher frequencies while the bandwidth decreases. We identified another normal mode of vibration of the quantum wire, which vibrates in the region of 274-280 cm(-1). In the dehydrated state, the band-gap energy and the first absorption maximum shift to lower energies as -delta(O(f)) increases, indicating the oxide-to-titanium(IV) charge-transfer nature of the transitions.


Subject(s)
Silicates/chemistry , Titanium/chemistry , Crystallization , Magnetic Resonance Spectroscopy , Metals/chemistry , Models, Molecular , X-Ray Diffraction
18.
Chemistry ; 15(3): 612-22, 2009.
Article in English | MEDLINE | ID: mdl-19065687

ABSTRACT

Analogues of 4-dodecyloxy-2-trifluoromethylbenzamide (12FH2) consisting of a hydrophobic alkyl chain, a trifluoromethylated aromatic ring, and a self-complementary hydrogen-bonding amido group were synthesized, and the structural effect of each component on the formation of parallelogrammatic pipes was investigated. Differential scanning calorimetry and powder XRD analyses revealed that all-trans L and gauche-rich S polymorphic forms appeared for the analogues with more than eight carbon atoms in the alkyl chain, that is, the polymorphism originates in the conformation of the alkyl groups and hydrogen-bonding patterns of the benzamide group. Also, the trifluoromethyl substituent is crucial in that it provides an appropriate molecular balance between the benzamide and alkyl groups. Scanning electron microscopy and powder XRD analyses of solids obtained by a drying-mediated assembly process revealed that production of the L polymorph by polymorphic transition from the S polymorph resulted in evolution of a three-dimensional structure when the alkyl group has more than 12 carbon atoms. Among the series of compounds, 12FH2 and 4-tetradecyloxy-2-trifluoromethylbenzamide (14FH2) formed parallelogrammatic pipes with micrometer dimensions. An atomic force microscopy study of 12FH2 suggested that a single pipe may be composed of platelike crystallites of L polymorph. From a mercury-intrusion porosimetry study, it was determined that macroporous materials with average pore diameters of about 40 microm and porosity of about 80% were obtained. The previously proposed self-templation mechanism by polymorphic transition from S to L polymorph was further discussed in view of polymorphism and the crystallization rate. An appropriate molecular balance between the benzamide and alkyl groups is necessary to induce a proper polymorphic transition for the development of a three-dimensional hollow structure in the evaporation process.

19.
J Am Chem Soc ; 129(35): 10870-85, 2007 Sep 05.
Article in English | MEDLINE | ID: mdl-17696433

ABSTRACT

The synthesis, crystal structure, characterization, and catalytic properties of the novel medium-pore zeolite TNU-9 (framework type TUN), one of the most crystallographically complex zeolites known to date, are described. TNU-9 was found to crystallize under hydrothermal conditions at the expense of a lamellar precursor over a very narrow range of SiO(2)/Al(2)O(3) and NaOH/SiO(2) ratios and in the presence of 1,4-bis(N-methylpyrrolidinium)butane and Na+ ions as structure-directing agents. A combination of molecular modeling and Rietveld refinement using synchrotron powder diffraction data confirms the proposed topology of as-made TNU-9 and suggests three or possibly four different sites for the organic within the complex pore structure. The proton form (H-TNU-9) of this new medium-pore zeolite exhibits exceptionally high hydrothermal stability, as well as very strong acidity. When compared to H-ZSM-5, H-MCM-22, H-mordenite, and H-Beta, H-TNU-9 displays unique shape selectivities for the acid-catalyzed reactions of monoaromatic hydrocarbons such as the disproportionation of toluene and the isomerization and disproportionation of m-xylene. In particular, for the isomerization of m-xylene, the ratio of isomerization to disproportionation increases steadily to values in excess of 50 with prolonged time on stream and a high p/o xylene ratio is observed in the products, achieving a value of ca. 6 after only a short time on stream. These results are rationalized on the basis of the unique pore topology of TNU-9.


Subject(s)
Silicon Dioxide/chemistry , Zeolites/chemistry , Catalysis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
20.
J Phys Chem B ; 110(16): 8188-93, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16623495

ABSTRACT

The host-guest interactions in AlPO4-11, AlPO4-31, SAPO-34, and AlPO4-41 molecular sieves prepared using the same organic structure-directing agent, i.e., dipropylamine, are investigated by a combination of Raman, 13C and 1H MAS NMR, and computer modeling studies. It was found that the organic molecules trapped within the pores of these four AlPO4-based materials exist as their protonated form and adopt distinct conformations in order to fit well with the pore structure of each host. In particular, the presence of two different types of conformations of protonated dipropylamine in the circular 12-ring channels of AlPO4-31 has been ascertained.


Subject(s)
Aluminum Compounds/chemistry , Phosphates/chemistry , Propylamines/chemistry , Silicon Compounds/chemistry , Aluminum Compounds/chemical synthesis , Chromatography, Gel , Computer Simulation , Indicators and Reagents , Magnetic Resonance Spectroscopy , Models, Chemical , Models, Molecular , Molecular Conformation , Monte Carlo Method , Phosphates/chemical synthesis , Spectrum Analysis, Raman , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...