Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398413

ABSTRACT

Mutation in nucleophosmin (NPM1) causes relocalization of this normally nucleolar protein to the cytoplasm ( NPM1c+ ). Despite NPM1 mutation being the most common driver mutation in cytogenetically normal adult acute myeloid leukemia (AML), the mechanisms of NPM1c+-induced leukemogenesis remain unclear. Caspase-2 is a pro-apoptotic protein activated by NPM1 in the nucleolus. Here, we show that caspase-2 is also activated by NPM1c+ in the cytoplasm, and DNA damage-induced apoptosis is caspase-2-dependent in NPM1c+ AML but not in NPM1wt cells. Strikingly, in NPM1c+ cells, loss of caspase-2 results in profound cell cycle arrest, differentiation, and down-regulation of stem cell pathways that regulate pluripotency including impairment in the AKT/mTORC1 and Wnt signaling pathways. In contrast, there were minimal differences in proliferation, differentiation, or the transcriptional profile of NPM1wt cells with and without caspase-2. Together, these results show that caspase-2 is essential for proliferation and self-renewal of AML cells that have mutated NPM1. This study demonstrates that caspase-2 is a major effector of NPM1c+ function and may even be a druggable target to treat NPM1c+ AML and prevent relapse.

2.
ACS Appl Bio Mater ; 5(12): 5816-5825, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36441967

ABSTRACT

Diseases affecting the retina, such as age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and retinal vein occlusions, are currently treated by the intravitreal injection of drug formulations. These disease pathologies are driven by oxidative damage due to chronic high concentrations of reactive oxygen species (ROS) in the retina. Intravitreal injections often induce retinal detachment, intraocular hemorrhage, and endophthalmitis. Furthermore, the severe eye pain associated with these injections lead to patient noncompliance and treatment discontinuation. Hence, there is a critical need for the development of a noninvasive therapy that is effective for a prolonged period for treating retinal diseases. In this study, we developed a noninvasive cerium oxide nanoparticle (CNP) delivery wafer (Cerawafer) for the modulation of ROS in the retina. We fabricated Cerawafer loaded with CNP and determined its SOD-like enzyme-mimetic activity and ability to neutralize ROS generated in vitro. We demonstrated Cerawafer's ability to deliver CNP in a noninvasive fashion to the retina in healthy mouse eyes and the CNP retention in the retina for more than a week. Our studies have demonstrated the in vivo efficacy of the Cerawafer to modulate ROS and associated down-regulation of VEGF expression in the retinas of very-low-density lipoprotein receptor knockout (vldlr-/-) mouse model. The development of a Cerawafer nanotherapeutic will fulfill a hitherto unmet need. Currently, there is no such therapeutic available, and the development of a Cerawafer nanotherapeutic will be a major advancement in the treatment of retinal diseases.


Subject(s)
Nanoparticles , Retinal Diseases , Mice , Animals , Reactive Oxygen Species/metabolism , Retina , Oxidative Stress , Nanoparticles/therapeutic use , Retinal Diseases/metabolism
3.
Pharmaceutics ; 13(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34683921

ABSTRACT

Eye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model. The DS-wafers were fabricated by the electrospinning method. We assessed the efficacy of the DS-wafer by light microscopy, qPCR, confocal fluorescence imaging, and histopathological analysis. These studies demonstrated that the DS-wafer treatment is significantly effective in modulating corneal inflammation and fibrosis and inhibited corneal scarring and opacification compared to the unsulfated dextran-wafer treated and untreated corneas. Furthermore, these studies have demonstrated the efficacy of dextran sulfate as an anti-inflammatory and antifibrotic polymer therapeutic.

4.
Pharmaceutics ; 13(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575520

ABSTRACT

Nitric oxide (NO) is a highly reactive gas molecule, exhibiting antimicrobial properties. Because of its reactive nature, it is challenging to store and deliver NO efficiently as a therapeutic agent. The objective of this study was to develop NO-releasing polymeric fibers (NO-fibers), as an effective delivery platform for NO. NO-fibers were fabricated with biopolymer solutions of polyvinyl pyrrolidone (PVP) and ethylcellulose (EC), and derivatives of N-diazeniumdiolate (NONOate) as NO donor molecules, using an electrospinning system. We evaluated in vitro NO release kinetics, along with antimicrobial effects and cytotoxicity in microorganisms and human cell culture models. We also studied the long-term stability of NONOates in NO-fibers over 12 months. We demonstrated that the NO-fibers could release NO over 24 h, and showed inhibition of the growth of Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA), without causing cytotoxicity in human cells. NO-fibers were able to store NONOates for over 12 months at room temperature. This study presents the development of NO-fibers, and the feasibility of NO-fibers to efficiently store and deliver NO, which can be further developed as a bandage.

5.
Adv Mater ; 33(4): e2003778, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33325594

ABSTRACT

Development of inflammation modulating polymer scaffolds for soft tissue repair with minimal postsurgical complications is a compelling clinical need. However, the current standard of care soft tissue repair meshes for hernia repair is highly inflammatory and initiates a dysregulated inflammatory process causing visceral adhesions and postsurgical complications. Herein, the development of an inflammation modulating biomaterial scaffold (bioscaffold) for soft tissue repair is presented. The bioscaffold design is based on the idea that, if the excess proinflammatory cytokines are sequestered from the site of injury by the surgical implantation of a bioscaffold, the inflammatory response can be modulated, and the visceral adhesion formations and postsurgical complications can be minimized. The bioscaffold is fabricated by 3D-bioprinting of an in situ phosphate crosslinked poly(vinyl alcohol) polymer. In vivo efficacy of the bioscaffold is evaluated in a rat ventral hernia model. In vivo proinflammatory cytokine expression analysis and histopathological analysis of the tissues have confirmed that the bioscaffold acts as an inflammation trap and captures the proinflammatory cytokines secreted at the implant site and effectively modulates the local inflammation without the need for exogenous anti-inflammatory agents. The bioscaffold is very effective in inhibiting visceral adhesions formation and minimizing postsurgical complications.


Subject(s)
Bioprinting , Polymers/chemistry , Printing, Three-Dimensional , Animals , Hernia, Ventral/pathology , Hernia, Ventral/therapy , Inflammation/pathology , Rats
6.
Drug Discov Today ; 24(8): 1679-1684, 2019 08.
Article in English | MEDLINE | ID: mdl-31175955

ABSTRACT

Drug delivery to the posterior segment of the eye remains challenging even though the eye is readily accessible. Its unique and complex anatomy and physiology contribute to the limited options for drug delivery via non-invasive topical treatment, which is the prevalent ophthalmic treatment. To treat the most common retinal diseases, intravitreal (IVT) injection has been a common and effective therapy. With the advancement of nanotechnologies, novel formulations and drug delivery systems are being developed to treat posterior segment diseases. Here, we discuss the recent advancement in ocular delivery systems, including-sustained release formulations, IVT implants, and preclinical topical formulations, and the challenges faced in their clinical translation.


Subject(s)
Ophthalmic Solutions/administration & dosage , Posterior Eye Segment/drug effects , Retinal Diseases/drug therapy , Administration, Topical , Animals , Delayed-Action Preparations/administration & dosage , Drug Delivery Systems/methods , Humans
7.
Biomaterials ; 177: 125-138, 2018 09.
Article in English | MEDLINE | ID: mdl-29886385

ABSTRACT

Autologous cell transplantation holds enormous promise to restore organ and tissue functions in the treatment of various pathologies including endocrine, cardiovascular, and neurological diseases among others. Even though immune rejection is circumvented with autologous transplantation, clinical adoption remains limited due to poor cell retention and survival. Cell transplant success requires homing to vascularized environment, cell engraftment and importantly, maintenance of inherent cell function. To address this need, we developed a three dimensional (3D) printed cell encapsulation device created with polylactic acid (PLA), termed neovascularized implantable cell homing and encapsulation (NICHE). In this paper, we present the development and systematic evaluation of the NICHE in vitro, and the in vivo validation with encapsulated testosterone-secreting Leydig cells in Rag1-/- castrated mice. Enhanced subcutaneous vascularization of NICHE via platelet-rich plasma (PRP) hydrogel coating and filling was demonstrated in vivo via a chorioallantoic membrane (CAM) assay as well as in mice. After establishment of a pre-vascularized bed within the NICHE, transcutaneously transplanted Leydig cells, maintained viability and robust testosterone secretion for the duration of the study. Immunohistochemical analysis revealed extensive Leydig cell colonization in the NICHE. Furthermore, transplanted cells achieved physiologic testosterone levels in castrated mice. The promising results provide a proof of concept for the NICHE as a viable platform technology for autologous cell transplantation for the treatment of a variety of diseases.


Subject(s)
Biocompatible Materials/chemistry , Leydig Cells/transplantation , Polyesters/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Survival , Cells, Cultured , Cells, Immobilized/cytology , Cells, Immobilized/transplantation , Human Umbilical Vein Endothelial Cells , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Islets of Langerhans/cytology , Leydig Cells/cytology , Male , Mice , Neovascularization, Physiologic , Printing, Three-Dimensional , Tissue Engineering
8.
Methods Mol Biol ; 1570: 279-285, 2017.
Article in English | MEDLINE | ID: mdl-28238144

ABSTRACT

The hydrogel template strategy was previously developed to fabricate homogeneous polymeric microparticles. Here, we demonstrate the versatility of the hydrogel template strategy for the development of nanowafer-based ocular drug delivery systems. We describe the fabrication of dexamethasone-loaded nanowafers using polyvinyl alcohol and the instillation of a nanowafer on a mouse eye. The nanowafer, a small circular disk, is placed on the ocular surface, and it releases a drug as it slowly dissolves over time, thus increasing ocular bioavailability and enhancing efficiency to treat eye injuries.


Subject(s)
Drug Delivery Systems , Eye/drug effects , Hydrogel, Polyethylene Glycol Dimethacrylate , Animals , Biocompatible Materials/chemistry , Cornea/drug effects , Dexamethasone/administration & dosage , Dimethylpolysiloxanes/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Mice , Polymers/chemistry , Polyvinyl Alcohol/chemistry
9.
Mol Pharm ; 13(10): 3468-3477, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27571217

ABSTRACT

A synergy between the polymer biomaterial and drug plays an important role in enhancing the therapeutic efficacy, improving the drug stability, and minimizing the local immune responses in the development of drug delivery systems. Particularly, in the case of ocular drug delivery, the need for the development of synergistic drug delivery system becomes more pronounced because of the wet ocular mucosal surface and highly innervated cornea, which elicit a strong inflammatory response to the instilled drug formulations. This article presents the development of a synergistic cysteamine delivery nanowafer to treat corneal cystinosis. Corneal cystinosis is a rare metabolic disease that causes the accumulation of cystine crystals in the cornea resulting in corneal opacity and loss of vision. It is treated with topical cysteamine (Cys) eye drops that need to be instilled 6-12 times a day throughout the patient's life, which causes side effects such as eye pain, redness, and ocular inflammation. As a result, compliance and treatment outcomes are severely compromised. To surmount these issues, we have developed a clinically translatable Cys nanowafer (Cys-NW) that can be simply applied on the eye with a fingertip. During the course of the drug release, Cys-NW slowly dissolves and fades away. The in vivo studies in cystinosin knockout mice demonstrated twice the therapeutic efficacy of Cys-NW containing 10 µg of Cys administered once a day, compared to 44 µg of Cys as topical eye drops administered twice a day. Furthermore, Cys-NW stabilizes Cys for up to four months at room temperature compared to topical Cys eye drops that need to be frozen or refrigerated and still remain active for only 1 week. The Cys-NW, because of its enhanced therapeutic efficacy, safety profile, and extended drug stability at room temperature, can be rapidly translated to the clinic for human trials.


Subject(s)
Cornea/metabolism , Cysteamine/administration & dosage , Cysteamine/therapeutic use , Cystinosis/drug therapy , Cystinosis/metabolism , Animals , Cornea/drug effects , Cystine/metabolism , Drug Delivery Systems/methods , Female , Mass Spectrometry , Mice , Mice, Inbred C57BL , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/therapeutic use , Treatment Outcome
10.
Invest Ophthalmol Vis Sci ; 57(7): 3222-30, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27327581

ABSTRACT

PURPOSE: To evaluate the efficacy of a controlled release dexamethasone delivery system for suppressing inflammation in an ocular burn + desiccating stress (OB+DS) model. METHODS: Nanowafers (NW) loaded with Dexamethasone (Dex, 10 µg) or vehicles (2.5% Methylcellulose; MC) were fabricated using hydrogel template strategy. C57BL/6 mice were subjected to unilateral alkali ocular burn with concomitant desiccating stress for 2 or 5 days and topically treated either with 2 µL of 0.1% Dex or vehicle four times per day and compared with mice that had MC-NW or Dex-NW placed on their corneas. Clinical parameters were evaluated daily. Mice were euthanized after 2 or 5 days. Quantitative PCR evaluated the expression of inflammatory cytokines IL-1ß and IL-6 and matrix metalloproteinases (MMP) in whole cornea lysates. Myeloperoxidase activity (MPO) was measured using a commercial kit in cornea lysates. RESULTS: Both Dex drop and Dex-NW groups had significantly lower corneal opacity scores compared with their vehicles. Both Dex drops and Dex-NW significantly decreased expression of IL-1ß, IL-6, and MMP-9 RNA transcripts compared with vehicle drops or wafers 2 and 5 days after the initial lesion. A significant lower number of neutrophils was found in both Dex treatment groups and this was accompanied by decreased MPO activity compared with vehicle controls. CONCLUSIONS: Dex-NW has efficacy equal to Dex drops in preserving corneal clarity and decreasing expression of MMPs and inflammatory cytokines of the corneas of mice subjected to an OB+DS model.


Subject(s)
Burns, Chemical/drug therapy , Dexamethasone/administration & dosage , Dry Eye Syndromes/drug therapy , Eye Burns/drug therapy , Alkalies/toxicity , Animals , Burns, Chemical/complications , Burns, Chemical/pathology , Cornea/drug effects , Cornea/pathology , Delayed-Action Preparations , Disease Models, Animal , Drug Delivery Systems , Dry Eye Syndromes/etiology , Dry Eye Syndromes/pathology , Eye Burns/complications , Eye Burns/pathology , Female , Glucocorticoids/administration & dosage , Mice , Mice, Inbred C57BL , Nanostructures
11.
J Control Release ; 213: 168-174, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26184051

ABSTRACT

Dry eye disease is a major public health problem that affects millions of people worldwide. It is presently treated with artificial tear and anti-inflammatory eye drops that are generally administered several times a day and may have limited therapeutic efficacy. To improve convenience and efficacy, a dexamethasone (Dex) loaded nanowafer (Dex-NW) has been developed that can release the drug on the ocular surface for a longer duration of time than drops, during which it slowly dissolves. The Dex-NW was fabricated using carboxymethyl cellulose polymer and contains arrays of 500 nm square drug reservoirs filled with Dex. The in vivo efficacy of the Dex-NW was evaluated using an experimental mouse dry eye model. These studies demonstrated that once a day Dex-NW treatment on alternate days during a five-day treatment period was able to restore a healthy ocular surface and corneal barrier function with comparable efficacy to twice a day topically applied dexamethasone eye drop treatment. The Dex-NW was also very effective in down regulating expression of inflammatory cytokines (TNF-α, and IFN-γ), chemokines (CXCL-10 and CCL-5), and MMP-3, that are stimulated by dry eye. Despite less frequent dosing, the Dex-NW has comparable therapeutic efficacy to topically applied Dex eye drops in experimental mouse dry eye model, and these results provide a strong rationale for translation to human clinical trials for dry eye.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Carboxymethylcellulose Sodium/chemistry , Cornea/drug effects , Delayed-Action Preparations/chemistry , Dexamethasone/administration & dosage , Dry Eye Syndromes/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Cornea/immunology , Cornea/pathology , Cytokines/immunology , Dexamethasone/therapeutic use , Drug Delivery Systems , Dry Eye Syndromes/immunology , Dry Eye Syndromes/pathology , Female , Mice, Inbred C57BL , Nanostructures/chemistry
12.
ACS Nano ; 9(2): 1749-58, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25585134

ABSTRACT

Presently, eye injuries are treated by topical eye drop therapy. Because of the ocular surface barriers, topical eye drops must be applied several times in a day, causing side effects such as glaucoma, cataract, and poor patient compliance. This article presents the development of a nanowafer drug delivery system in which the polymer and the drug work synergistically to elicit an enhanced therapeutic efficacy with negligible adverse immune responses. The nanowafer is a small transparent circular disc that contains arrays of drug-loaded nanoreservoirs. The slow drug release from the nanowafer increases the drug residence time on the ocular surface and its subsequent absorption into the surrounding ocular tissue. At the end of the stipulated period of drug release, the nanowafer will dissolve and fade away. The in vivo efficacy of the axitinib-loaded nanowafer was demonstrated in treating corneal neovascularization (CNV) in a murine ocular burn model. The laser scanning confocal imaging and RT-PCR study revealed that once a day administered axitinib nanowafer was therapeutically twice as effective, compared to axitinib delivered twice a day by topical eye drop therapy. The axitinib nanowafer is nontoxic and did not affect the wound healing and epithelial recovery of the ocular burn induced corneas. These results confirmed that drug release from the axitinib nanowafer is more effective in inhibiting CNV compared to the topical eye drop treatment even at a lower dosing frequency.


Subject(s)
Drug Delivery Systems/methods , Eye , Nanotechnology/methods , Animals , Axitinib , Cornea/blood supply , Cornea/drug effects , Cornea/immunology , Corneal Neovascularization/drug therapy , Diffusion , Drug Liberation , Eye/blood supply , Eye/drug effects , Eye/immunology , Female , Imidazoles/adverse effects , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indazoles/adverse effects , Indazoles/chemistry , Indazoles/pharmacology , Indazoles/therapeutic use , Mice , Mice, Inbred C57BL , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Wound Healing/drug effects
13.
J Control Release ; 194: 157-67, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25194778

ABSTRACT

Delivery of therapeutic agents selectively to tumor tissue, which is referred as "targeted delivery," is one of the most ardently pursued goals of cancer therapy. Recent advances in nanotechnology enable numerous types of nanoparticles (NPs) whose properties can be designed for targeted delivery to tumors. In spite of promising early results, the delivery and therapeutic efficacy of the majority of NPs are still quite limited. This is mainly attributed to the limitation of currently available tumor models to test these NPs and systematically study the effects of complex transport and pathophysiological barriers around the tumors. In this study, thus, we developed a new in vitro tumor model to recapitulate the tumor microenvironment determining the transport around tumors. This model, named tumor-microenvironment-on-chip (T-MOC), consists of 3-dimensional microfluidic channels where tumor cells and endothelial cells are cultured within extracellular matrix under perfusion of interstitial fluid. Using this T-MOC platform, the transport of NPs and its variation due to tumor microenvironmental parameters have been studied including cut-off pore size, interstitial fluid pressure, and tumor tissue microstructure. The results suggest that T-MOC is capable of simulating the complex transport around the tumor, and providing detailed information about NP transport behavior. This finding confirms that NPs should be designed considering their dynamic interactions with tumor microenvironment.


Subject(s)
Nanoparticles/metabolism , Neoplasms/metabolism , Tumor Microenvironment , Capillaries/metabolism , Cell Line, Tumor , Cells, Cultured , Computer Simulation , Drug Delivery Systems , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Extracellular Fluid/metabolism , Extracellular Matrix/metabolism , Female , Humans , MCF-7 Cells , Microfluidics , Particle Size
14.
Mol Pharm ; 10(6): 2167-75, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23461341

ABSTRACT

The importance and advantages of three-dimensional (3D) cell cultures have been well-recognized. Tumor cells cultured in a 3D culture system as multicellular tumor spheroids (MTS) can bridge the gap between in vitro and in vivo anticancer drug evaluations. An in vitro 3D tumor model capable of providing close predictions of in vivo drug efficacy will enhance our understanding, design, and development of better drug delivery systems. Here, we developed an in vitro 3D tumor model by adapting the hydrogel template strategy to culture uniformly sized spheroids in a hydrogel scaffold containing microwells. The in vitro 3D tumor model was to closely simulate an in vivo solid tumor and its microenvironment for evaluation of anticancer drug delivery systems. MTS cultured in the hydrogel scaffold are used to examine the effect of culture conditions on the drug responses. Free MTS released from the scaffold are transferred to a microfluidic channel to simulate a dynamic in vivo microenvironment. The in vitro 3D tumor model that mimics biologically relevant parameters of in vivo microenvironments such as cell-cell and cell-ECM interactions, and a dynamic environment would be a valuable device to examine efficiency of anticancer drug and targeting specificity. These models have potential to provide in vivo correlated information to improve and optimize drug delivery systems for an effective chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Microfluidic Analytical Techniques/methods , Neoplasms/pathology , Spheroids, Cellular/drug effects , Cell Line, Tumor , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microscopy, Electron, Scanning
15.
J Control Release ; 146(2): 201-6, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20381555

ABSTRACT

The hydrogel template method was used to fabricate homogeneous drug-PLGA microparticles. Four drugs (felodipine, risperidone, progesterone, and paclitaxel) were loaded into the PLGA particles with the homogeneous size of 10microm, 20microm, and 50microm. The drug loading into the PLGA microparticles was 50% and higher. The felodipine-PLGA microstructures of four different sizes showed that the drug release kinetics is dependent on the total surface area available for drug release. The smaller the particle size, the release rate was faster. Two types of microparticles (10microm diameter and 10microm height, and 50microm diameter and 5microm height) showed zero-order release and complete release was observed within 2weeks. The release rate, however, was not exactly proportional to the surface area. Different drugs which were loaded into the same PLGA formulation showed different release profiles. The main difference was on the initial burst release. The overall release profile seems to be similar for different drugs, if the release profile is adjusted to eliminate the burst release. The initial burst release appears to be inversely related to the water-solubility of a drug, i.e., the lower the water-solubility of a drug, the higher the burst release. The hydrogel template method allowed preparation of homogeneous particles with predefined sizes with high drug loading. It allowed study on the effect of size and shape on the drug release kinetics. With the microparticles of homogeneous size and shape, the drug release kinetics can be projected based on the size of microparticles and water-solubility of a drug. The ability of making homogeneous particles is expected to provide better prediction and reproducibility of the drug release property of a given formulation.


Subject(s)
Drug Carriers/chemistry , Lactic Acid/chemistry , Pharmaceutical Preparations/administration & dosage , Polyglycolic Acid/chemistry , Hydrogels/chemistry , Kinetics , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer
16.
J Control Release ; 141(3): 314-9, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19822178

ABSTRACT

Nano/microparticles have been used widely in drug delivery applications. The majority of the particles are prepared by the conventional emulsion methods, which tend to result in particles with heterogeneous size distribution with sub-optimal drug loading and release properties. Recently, microfabrication methods have been used to make nano/microparticles with a monodisperse size distribution. The existing methods utilize solid templates for making particles, and the collection of individual particles after preparation has not been easy. The new hydrogel template approach was developed to make the particle preparation process simple and fast. The hydrogel template approach is based on the unique properties of physical gels that can undergo sol-gel phase transition upon changes in environmental conditions. The phase reversible hydrogels, however, are in general mechanically too weak to be treated as a solid material. It was unexpectedly found that gelatin hydrogels could be made to possess various properties necessary for microfabrication of nano/microparticles in large quantities. The size of the particles can be adjusted from 200 nm to >50 microm, providing flexibility in controlling the size in drug delivery formulations. The simplicity in processing makes the hydrogel template method useful for scale-up manufacturing of particles. The drug loading capacity is 50% or higher, and yet the initial burst release is minimal. The hydrogel template approach presents a new strategy of preparing nano/microparticles of predefined size and shape with homogeneous size distribution for drug delivery applications.


Subject(s)
Hydrogels , Microtechnology/methods , Nanoparticles , Nanostructures/chemistry , Nanotechnology/methods , Animals , Drug Delivery Systems , Gelatin/chemistry , Lactic Acid/chemistry , Materials Testing , Molecular Weight , Nanostructures/ultrastructure , Particle Size , Phase Transition , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Silicon/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...