Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37112210

ABSTRACT

Object localization is a sub-field of computer vision-based object recognition technology that identifies object classes and locations. Studies on safety management are still in their infancy, particularly those aimed at lowering occupational fatalities and accidents at indoor construction sites. In comparison to manual procedures, this study suggests an improved discriminative object localization (IDOL) algorithm to aid safety managers with visualization to improve indoor construction site safety management. The IDOL algorithm employs Grad-CAM visualization images from the EfficientNet-B7 classification network to automatically identify internal characteristics pertinent to the set of classes evaluated by the network model without the need for further annotation. To evaluate the performance of the presented algorithm in the study, localization accuracy in 2D coordinates and localization error in 3D coordinates of the IDOL algorithm and YOLOv5 object detection model, a leading object detection method in the current research area, are compared. The comparison findings demonstrate that the IDOL algorithm provides a higher localization accuracy with more precise coordinates than the YOLOv5 model over both 2D images and 3D point cloud coordinates. The results of the study indicate that the IDOL algorithm achieved improved localization performance over the existing YOLOv5 object detection model and, thus, is able to assist with visualization of indoor construction sites in order to enhance safety management.

2.
Sensors (Basel) ; 22(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35270984

ABSTRACT

Deep learning has been widely employed in recent studies on bridge-damage detection to improve the performance of damage-detection methods. Unsupervised deep learning can be effectively utilized to increase the applicability of damage-detection approaches. Hence, the authors propose a convolutional-autoencoder (CAE)-based damage-detection approach, which is an unsupervised deep-learning network. However, the CAE-based damage-detection approach demonstrates only satisfactory accuracy for prestressed concrete bridges with a single-vehicle load. Therefore, this study was performed to verify whether the CAE-based damage-detection approach can be applied to bridges with multi-vehicle loads, which is a typical scenario. In this study, rigid-frame and reinforced-concrete-slab bridges were modeled and simulated to obtain the behavior data of bridges. A CAE-based damage-detection approach was tested on both bridges. For both bridges, the results demonstrated satisfactory damage-detection accuracy of over 90% and a false-negative rate of less than 1%. These results prove that the CAE-based approach can be successfully applied to various types of bridges with multi-vehicle loads.

3.
Sensors (Basel) ; 19(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959777

ABSTRACT

The most important structural element of prestressed concrete (PSC) bridges is the prestressed tendon, and in order to ensure safety of such bridges, it is very important to determine whether the tendon is damaged. However, it is not easy to detect tendon damage in real time. This study proposes a novelty detection approach for damage to the tendons of PSC bridges based on a convolutional autoencoder (CAE). The proposed method employs simulation data from nine accelerometers. The accuracies of CAEs for multi-vehicle are 79.5%⁻85.8% for 100% and 75% damage severities with all error levels and 50% damage severity without error. However, the accuracies for 50% damage severity with 5% and 10% error levels drop to 69.4%⁻73.3%. The accuracies of CAEs for single-vehicle ranges from 90.1%⁻95.1% for all damage severities and error levels that are satisfactory. The findings indicate that the CAE approach for multi-vehicle can be effective when the damages are severe, but not when moderate. Meanwhile, if acceleration data can be obtained for single-vehicle, then the CAE approach can provide a highly accurate and robust method of tendon damage detection in PSC bridges in use, even if the measurement errors are significant.

SELECTION OF CITATIONS
SEARCH DETAIL
...