Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acc Chem Res ; 46(10): 2211-24, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23480658

ABSTRACT

Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several challenging issues remain, initial promising results in these areas point toward significant potential for graphene derivatives in biomedical research.


Subject(s)
Graphite/chemistry , Oxides/chemistry , Biosensing Techniques , Cell Division , Drug Carriers , Fluorescence Resonance Energy Transfer , Genetic Vectors , Mass Spectrometry , Nanostructures
2.
Nanotechnology ; 23(34): 344016, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-23057073

ABSTRACT

We demonstrate low-temperature growth and direct transfer of graphene-graphitic carbon films (G-GC) onto plastic substrates without the use of supporting materials. In this approach, G-GC films were synthesized on copper layers by using inductively coupled plasma enhanced chemical vapor deposition, enabling the growth of few-layer graphene (G) on top of Cu and the additional growth of graphitic carbon (GC) films above the graphene layer at temperatures as low as 300 °C. The patterned G-GC films are not easily damaged or detached from the polymer substrates during the wet etching and transfer process because of the van der Waals forces and π-π interactions between the films and the substrates. Raman spectroscopy reveals the two-dimensional hexagonal lattice of carbon atoms and the crystallinity of the G-GC films. The optical transparency and sheet resistance of the G-GC films are controlled by modulating the film thickness. Strain sensors are successfully fabricated on plastic substrates, and their resistance modulation at different strains is investigated.

3.
Nanoscale ; 4(18): 5527-37, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22864991

ABSTRACT

The first micrometer-sized graphene flakes extracted from graphite demonstrated outstanding electrical, mechanical and chemical properties, but they were too small for practical applications. However, the recent advances in graphene synthesis and transfer techniques have enabled various macroscopic applications such as transparent electrodes for touch screens and light-emitting diodes (LEDs) and thin-film transistors for flexible electronics in particular. With such exciting potential, a great deal of effort has been put towards producing larger size graphene in the hopes of industrializing graphene production. Little less than a decade after the first discovery, graphene now can be synthesized up to 30 inches in its diagonal size using chemical vapour deposition methods. In making this possible, it was not only the advances in the synthesis techniques but also the transfer methods that deliver graphene onto target substrates without significant mechanical damage. In this article, the recent advancements in transferring graphene to arbitrary substrates will be extensively reviewed. The methods are categorized into mechanical exfoliation, polymer-assisted transfer, continuous transfer by roll-to-roll process, and transfer-free techniques including direct synthesis on insulating substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...