Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 10(7): 2390-2399, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35844927

ABSTRACT

Our previous study showed that oyster hydrolysate (OH) protected against the liver damage caused by a single instance of ethanol (EtOH) binge drinking. Oyster broth concentrate (OBC) was discovered in the process of searching for a different substance derived from oysters (Crassostrea gigas) with economic value. OBC is a by-product of boiling oysters at 95°C for 3 min. In this study, we investigated the effects of OBC and its major component taurine on blood and liver tissues obtained from a single-EtOH-binge-drinking mouse model. The preadministration of OBC enhanced EtOH metabolism by increasing the activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and catalase. In addition, the preadministration of OBC reduced cytochrome P450 2E1 (CYP2E1) activity, reactive oxygen species (ROS) generation, Ca2+ concentrations, apoptotic signals, and inflammatory mediators in liver tissues. The reduction of apoptotic and inflammatory signals by OBC resulted from the downregulation of endoplasmic reticulum (ER) stress molecules and NF-κB activity. Taurine administration showed similar effects to OBC. These results show that OBC protected against acute EtOH-induced liver damage through the action of taurine. Our findings suggest that OBC could be an economically valuable substance and a functional food with hepatoprotective effects.

2.
Mar Drugs ; 18(10)2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33050644

ABSTRACT

Accumulative alcohol hangovers cause liver damage through oxidative and inflammatory stress. Numerous antioxidant and anti-inflammatory reagents have been developed to reduce alcohol hangovers, but these reagents are still insignificant and have limitations in that they can cause liver toxicity. Oyster hydrolysate (OH), another reagent that has antioxidant and anti-inflammatory activity, is a product extracted through an enzymatic hydrolysis process from oysters (Crassostrea gigas), which can be easily eaten in meals. This study was aimed at determining the effects of OH on alcohol metabolism, using a single high dose of ethanol (EtOH) administered to rodents, by monitoring alcohol metabolic enzymes, oxidative stress signals, and inflammatory mediators. The effect of tyrosine-alanine (YA) peptide, a main component of OH, on EtOH metabolism was also identified. In vitro experiments showed that OH pretreatment inhibited EtOH-induced cell death, oxidative stress, and inflammation in liver cells and macrophages. In vivo experiments showed that OH and YA pre-administration increased alcohol dehydrogenase, aldehyde dehydrogenase, and catalase activity in EtOH binge treatment. In addition, OH pre-administration alleviated CYP2E1 activity, ROS production, apoptotic signals, and inflammatory mediators in liver tissues. These results showed that OH and YA enhanced EtOH metabolism and had a protective effect against acute alcohol liver damage. Our findings offer new insights into a single high dose of EtOH drinking and suggest that OH and YA could be used as potential marine functional foods to prevent acute alcohol-induced liver damage.


Subject(s)
Crassostrea/chemistry , Dipeptides/pharmacology , Ethanol/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Animals , Dipeptides/chemistry , Ethanol/administration & dosage , Gene Expression Regulation, Enzymologic/drug effects , Hydrolysis , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Rats, Sprague-Dawley
3.
Cells ; 8(5)2019 05 14.
Article in English | MEDLINE | ID: mdl-31091801

ABSTRACT

Lipid emulsion (LE) therapy has been used to reduce overdose of bupivacaine (BPV)-induced cardiotoxicity. The TWIK-related potassium channel-1 (TREK-1) is inhibited by BPV and activated by polyunsaturated fatty acids, which are the main component in LE. These pharmacological properties inspired us to investigate whether the TREK-1 channel is associated with cell viability of H9c2 cardiomyoblasts affected by BPV and LE. Consistent with previous studies, BPV-induced cell death was reduced by LE treatment. The reduction in the TREK-1 expression level by BPV was alleviated by LE. The BPV cytotoxicity highly decreased in TREK-1 overexpressed cells but was the opposite in TREK-1 knocked-down cells. TREK-1 channel activators and inhibitors increased and decreased cell viability, respectively. BPV-induced depolarization of the plasma and mitochondrial membrane potential and increase in intracellular Ca2+ level were blocked by LE treatment. BPV-induced depolarization of membrane potential was reduced in TREK-1 overexpressed cells, indicating that TREK-1 channels mediate setting the resting membrane potentials as a background K+ channel in H9c2 cells. These results show that TREK-1 activity is involved in the BPV cytotoxicity and the antagonistic effect of LE in H9c2 cells and suggest that TREK-1 could be a target for action of BPV and LE.


Subject(s)
Cell Survival/drug effects , Lipids/pharmacology , Myoblasts, Cardiac/drug effects , Potassium Channels, Tandem Pore Domain/physiology , Animals , Bupivacaine/chemistry , Cardiotoxicity/drug therapy , Cell Line , Humans , Membrane Potential, Mitochondrial/drug effects , Myoblasts, Cardiac/cytology
4.
Cancers (Basel) ; 11(1)2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30634506

ABSTRACT

Depression is more common in women with breast cancer than the general population. Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are widely used for the treatment of patients with depression and a range of anxiety-related disorders. The association between the use of antidepressant medication and breast cancer is controversial. In this study, we investigated whether and how SSRIs induce the death of human breast cancer MCF-7 cells. Of the antidepressants tested in this study (amitriptyline, bupropion, fluoxetine, paroxetine, and tianeptine), paroxetine most reduced the viability of MCF-7 cells in a time-and dose-dependent manner. The exposure of MCF-7 cells to paroxetine resulted in mitochondrion-mediated apoptosis, which is assessed by increase in the number of cells with sub-G1 DNA content, caspase-8/9 activation, poly (ADP-ribose) polymerase cleavage, and Bax/Bcl-2 ratio and a reduction in the mitochondrial membrane potential. Paroxetine increased a generation of reactive oxygen species (ROS), intracellular Ca2+ levels, and p38 MAPK activation. The paroxetine-induced apoptotic events were reduced by ROS scavengers and p38 MAPK inhibitor, and the paroxetine's effect was dependent on extracellular Ca2+ level. Paroxetine also showed a synergistic effect on cell death induced by chemotherapeutic drugs in MCF-7 and MDA-MB-231 cells. Our results showed that paroxetine induced apoptosis of human breast cancer MCF-7 cells through extracellular Ca2+-and p38 MAPK-dependent ROS generation. These results suggest that paroxetine may serve as an anticancer adjuvant to current cancer therapies for breast cancer patients with or without depression.

SELECTION OF CITATIONS
SEARCH DETAIL
...