Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Materials (Basel) ; 13(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218243

ABSTRACT

Two xerogels made of 4-pyridyl cholesterol (PC) and silver-nanocomposites (SNCs) thereof have been studied for their efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of aqueous sodium borohydride. Since in-situ silver doping will be effective in ethanol and acetone solvents with a PC gelator, two silver-loaded PC xerogels were prepared and successive SNCs were achieved by using an environmentally benign trisodium citrate dehydrate reducing agent. The formed PC xerogels and their SNCs were comprehensively investigated using different physico-chemical techniques, such as field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), powdered X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis). The FE-SEM results confirm that the shape of xerogel-covered silver nanoparticles (SNPs) are roughly spherical, with an average size in the range of 30-80 nm. Thermal degradation studies were analyzed via the sensitive graphical Broido's method using a TGA technique. Both SNC-PC (SNC-PC-X1 and SNC-PC-X2) xerogels showed remarkable catalytic performances, with recyclable conversion efficiency of around 82% after the fourth consecutive run. The apparent rate constant (kapp) of SNC-PC-X1 and SNC-PC-X2 were found to be 6.120 × 10-3 sec-1 and 3.758 × 10-3 sec-1, respectively, at an ambient temperature.

5.
IEEE Trans Haptics ; 11(1): 22-29, 2018.
Article in English | MEDLINE | ID: mdl-29611810

ABSTRACT

In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.


Subject(s)
Man-Machine Systems , Nanotechnology , Touch , User-Computer Interface , Wearable Electronic Devices , Biomechanical Phenomena , Equipment Design , Humans , Nanoparticles/chemistry , Physical Stimulation , Plasticizers/chemistry , Polyvinyl Chloride/chemistry , Silicon Dioxide , Vibration
6.
Opt Express ; 25(17): 20133-20141, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041697

ABSTRACT

We propose a focus-tunable double-convex (DCX) lens based on a non-ionic PVC (nPVC) gel to be used at close conjugates. The proposed lens is composed of an nPVC gel and two plates with electrodes. Each plate has a hole whose boundary and inner part are pasted with an electrode (anode) and has another ring shaped electrode (cathode) whose center point is the same as the hole's center. The gel is sandwiched between an upper plate and a lower plate, and it is bulged inward between the holes of two plates by applied pressure from the plates (double-convex lens shape). The lens's focal length changed from 3 mm to 24.5 mm with applied voltages from 0 V to 400 V. We also observed that the proposed lens's field-of-view decreased from 121.9 ° to 41.9 ° according to the applied voltages. The proposed lens brings additional benefit for users with higher transmittance (over 94%).

7.
Sci Rep ; 7(1): 2068, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28522844

ABSTRACT

This paper presents a bio-inspired adaptive micro-lens with electrically tunable focus made of non-ionic high-molecular-weight polyvinyl chloride (PVC) gel. The optical device mimics the design of the crystalline lens and ciliary muscle of the human eye. It consists of a plano-convex PVC gel micro-lens on Indium Tin Oxide (ITO) glass, confined with an annular electrode operating as an artificial ciliary muscle. Upon electrical activation, the electroactive adhesive force of the PVC gel is exerted on the annular anode electrode, which reduces the sagittal height of the plano-convex PVC gel lens, resulting in focal length variation of the micro-lens. The focal length increases from 3.8 mm to 22.3 mm as the applied field is varied from 200 V/mm to 800 V/mm, comparable to that of the human lens. The device combines excellent optical characteristics with structural simplicity, fast response speed, silent operation, and low power consumption. The results show the PVC gel micro-lens is expected to open up new perspectives on practical tunable optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...