Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 253(Pt 8): 127511, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37866557

ABSTRACT

Glioblastoma Multiforme (GBM) is a malignant primary brain tumor. Radiotherapy, one of the standard treatments for GBM patients, could induce GBM radioresistance via rewiring cellular metabolism. However, the precise mechanism attributing to GBM radioresistance or targeting strategies to overcome GBM radioresistance are lacking. Here, we demonstrate that SLC25A22, a mitochondrial bi-directional glutamate transporter, is upregulated and showed uni-directionality from mitochondria to cytosol in radioresistant GBM cells, resulting in accumulating cytosolic glutamate. However, mitochondrial glutaminolysis-mediated TCA cycle metabolites and OCR are maintained constantly. The accumulated cytosolic glutamate enhances the glutathione (GSH) production and proline synthesis in radioresistant GBM cells. Increased GSH protects cells against ionizing radiation (IR)-induced reactive oxygen species (ROS) whereas increased proline, a rate-limiting substrate for collagen biosynthesis, induces extracellular matrix (ECM) remodeling, leading to GBM invasive phenotypes. Finally, we discover that genetic inhibition of SLC25A22 using miR-184 mimic decreases GBM radioresistance and aggressiveness both in vitro and in vivo. Collectively, our study suggests that SLC25A22 upregulation confers GBM radioresistance by rewiring glutamate metabolism, and SLC25A22 could be a significant therapeutic target to overcome GBM radioresistance.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Glutamic Acid , Radiation Tolerance/genetics , Cell Line, Tumor , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Mitochondria/metabolism , Proline , Mitochondrial Membrane Transport Proteins
2.
J Extracell Vesicles ; 12(5): e12325, 2023 05.
Article in English | MEDLINE | ID: mdl-37140946

ABSTRACT

People exposed to radiation in cancer therapy and nuclear accidents are at increased risk of cardiovascular outcomes in long-term survivors. Extracellular vesicles (EVs) are involved in radiation-induced endothelial dysfunction, but their role in the early stage of vascular inflammation after radiation exposure remains to be fully understood. Herein, we demonstrate that endothelial cell-derived EVs containing miRNAs initiate monocyte activation in radiation-induced vascular inflammation. In vitro co-culture and in vivo experimental data showed that endothelial EVs can be sensitively increased by radiation exposure in a dose-dependent manner, and stimulate monocytes releasing monocytic EVs and adhesion to endothelial cells together with an increase in the expression of genes encoding specific ligands for cell-cell interaction. Small RNA sequencing and transfection using mimics and inhibitors explained that miR-126-5p and miR-212-3p enriched in endothelial EVs initiate vascular inflammation by monocyte activation after radiation exposure. Moreover, miR-126-5p could be detected in the circulating endothelial EVs of radiation-induced atherosclerosis model mice, which was found to be tightly correlated with the atherogenic index of plasma. In summary, our study showed that miR-126-5p and miR-212-3p present in the endothelial EVs mediate the inflammatory signals to activate monocytes in radiation-induced vascular injury. A better understanding of the circulating endothelial EVs content can promote their use as diagnostic and prognostic biomarkers for atherosclerosis after radiation exposure.


Subject(s)
Atherosclerosis , Extracellular Vesicles , MicroRNAs , Animals , Mice , Monocytes/metabolism , Extracellular Vesicles/metabolism , Endothelial Cells/metabolism , MicroRNAs/metabolism , Atherosclerosis/etiology , Inflammation/metabolism
3.
Cell Rep Med ; 4(1): 100880, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36603576

ABSTRACT

Glioblastoma (GBM) currently has a dismal prognosis. GBM cells that survive radiotherapy contribute to tumor progression and recurrence with metabolic advantages. Here, we show that diacylglycerol kinase B (DGKB), a regulator of the intracellular concentration of diacylglycerol (DAG), is significantly downregulated in radioresistant GBM cells. The downregulation of DGKB increases DAG accumulation and decreases fatty acid oxidation, contributing to radioresistance by reducing mitochondrial lipotoxicity. Diacylglycerol acyltransferase 1 (DGAT1), which catalyzes the formation of triglycerides from DAG, is increased after ionizing radiation. Genetic inhibition of DGAT1 using short hairpin RNA (shRNA) or microRNA-3918 (miR-3918) mimic suppresses radioresistance. We discover that cladribine, a clinical drug, activates DGKB, inhibits DGAT1, and sensitizes GBM cells to radiotherapy in vitro and in vivo. Together, our study demonstrates that DGKB downregulation and DGAT1 upregulation confer radioresistance by reducing mitochondrial lipotoxicity and suggests DGKB and DGAT1 as therapeutic targets to overcome GBM radioresistance.


Subject(s)
Diacylglycerol Kinase , Glioblastoma , Humans , Diacylglycerol Kinase/genetics , Diacylglycerol Kinase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Glioblastoma/genetics , Glioblastoma/radiotherapy , Lipids/toxicity , Triglycerides/metabolism , Up-Regulation
4.
Int J Radiat Biol ; 99(5): 791-806, 2023.
Article in English | MEDLINE | ID: mdl-36383216

ABSTRACT

PURPOSE: Atherosclerosis is a lipid-driven chronic inflammatory disease that causes cardiovascular diseases (CVD). The association between radiation and atherosclerosis has already been demonstrated; however, the effects of low-dose radiation (LDR) exposure on atherosclerosis have not been reported. Our study aims to propose that LDR may cause atherosclerosis phenotypes by the upregulation of plasminogen activator inhibitor-1 (PAI-1) and downregulation of androgen receptor (AR), which are cytokines secreted from the liver. METHODS: Low-density lipoprotein (LDL) receptor deficient (Ldlr-/-) mice were irradiated at 50 mGy, 100 mGy, and 1000 mGy. LDR irradiated Ldlr-/- mice serum was analyzed by cytokine array and proteomics with silver staining. Oil Red O staining and BODIPY staining were performed to determine lipid accumulation in Human umbilical vein endothelial cells (HUVECs). Foam cell formation and monocyte recruitment were assessed through co-culture system with HUVECs and THP-1 cells. RESULTS: After irradiation with LDR (100 mGy) the mice showed atherosclerotic phenotypes and through analysis results, we selected regulated cytokines, PAI-1 and AR, and found that these were changed in the liver. LDR-regulated cytokines have the potential to be transported to endothelial cells and induce lipid accumulation, inflammation of monocytes, increased oxidized low-density lipoprotein (oxLDL) and foam cells formation, that were series of phenotypes lead to plaque formation in endothelial cells and induces atherosclerosis. As a further aspect of this study, testosterone undecanoate (TU) was found to pharmacologically inhibit a series of atherosclerotic phenotypes exhibited by LDR. This study suggests a role for PAI-1 and AR in regulating the development of atherosclerosis after LDR exposure. Targeting PAI-1 and AR could serve as an attractive strategy for the management of atherosclerosis following LDR exposure.


Subject(s)
Atherosclerosis , Cytokines , Humans , Animals , Mice , Plasminogen Activator Inhibitor 1/pharmacology , Atherosclerosis/etiology , Lipoproteins, LDL/pharmacology , Human Umbilical Vein Endothelial Cells , Liver
5.
Cells ; 11(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36231065

ABSTRACT

Cancer cachexia is a muscle-wasting syndrome that leads to a severely compromised quality of life and increased mortality. A strong association between cachexia and poor prognosis has been demonstrated in intractable cancers, including glioblastoma (GBM). In the present study, it was demonstrated that ionizing radiation (IR), the first-line treatment for GBM, causes cancer cachexia by increasing the exosomal release of plasminogen activator inhibitor-1 (PAI-1) from glioblastoma cells. Exosomal PAI-1 delivered to the skeletal muscle is directly penetrated in the muscles and phosphorylates STAT3 to intensify muscle atrophy by activating muscle RING-finger protein-1 (MuRF1) and muscle atrophy F-box (Atrogin1); furthermore, it hampers muscle protein synthesis by inhibiting mTOR signaling. Additionally, pharmacological inhibition of PAI-1 by TM5441 inhibited muscle atrophy and rescued muscle protein synthesis, thereby providing survival benefits in a GBM orthotopic xenograft mouse model. In summary, our data delineated the role of PAI-1 in the induction of GBM cachexia associated with radiotherapy-treated GBM. Our data also indicated that targeting PAI-1 could serve as an attractive strategy for the management of GBM following radiotherapy, which would lead to a considerable improvement in the quality of life of GBM patients undergoing radiotherapy.


Subject(s)
Cachexia , Glioblastoma , Animals , Cachexia/etiology , Cachexia/metabolism , Glioblastoma/complications , Glioblastoma/radiotherapy , Humans , Mice , Muscle Proteins/metabolism , Muscular Atrophy/metabolism , Plasminogen Activator Inhibitor 1 , Quality of Life , Radiation, Ionizing , TOR Serine-Threonine Kinases
6.
Neurobiol Stress ; 16: 100423, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35028340

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are effective first line therapies for treating depression, but are plagued by undesirable side effects and are not effective in all patients. Because SSRIs effectively deplete the neuronal releasable serotonin (5-HT) pool, gaining a deeper understanding of intracellular mechanisms regulating 5-HT pools can help us understand the shortcomings of SSRIs and develop more effective therapies. In this study, we found that BAIAP3 (brain-specific angiogenesis inhibitor 1-associated protein 3) is significantly downregulated in two mouse models of depression (the IR- and CUMS-induced depressive mouse models). In BAIAP3 downregulated models (in vitro and in vivo), we discovered that trafficking of dense core vesicle (DCV), organelles that store, transport and release cargo via exocytosis, was reduced. Accordingly, 5-HT exocytosis and levels in the synapse were lowered, causing defective post-synaptic neurotransmission. In a screen of natural products, we identified eucalyptol, the active components of Eucalyptus, as uniquely capable of increasing neuronal Baiap3 expression and elevate synaptic 5-HT levels. Moreover, eucalyptol treatment relieved depressive behavioral symptoms and restored serotonin levels in mice. Mechanistically, eucalyptol restores Baiap3 expression by reducing inhibitory microRNAs (miR-329, miR-362). These findings illuminate how Baiap3 depletion propagates neurotransmission dysfunction and point to eucalyptol as a novel agent for restoring serotonin exocytosis, suggesting potential for developing eucalyptol as a therapy for treating depression.

7.
Int J Mol Sci ; 22(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576008

ABSTRACT

GBM is a high-grade cancer that originates from glial cells and has a poor prognosis. Although a combination of surgery, radiotherapy, and chemotherapy is prescribed to patients, GBM is highly resistant to therapies, and surviving cells show increased aggressiveness. In this study, we investigated the molecular mechanism underlying GBM progression after radiotherapy by establishing a GBM orthotopic xenograft mouse model. Based on transcriptomic analysis, we found that the expression of BEX1 and BEX4 was upregulated in GBM cells surviving radiotherapy. We also found that upregulated expression of BEX1 and BEX4 was involved in the formation of the filamentous cytoskeleton and altered mechanotransduction, which resulted in the activation of the YAP/TAZ signaling pathway. BEX1- and BEX4-mediated YAP/TAZ activation enhanced the tumor formation, growth, and radioresistance of GBM cells. Additionally, latrunculin B inhibited GBM progression after radiotherapy by suppressing actin polymerization in an orthotopic xenograft mouse model. Taken together, we suggest the involvement of cytoskeleton formation in radiation-induced GBM progression and latrunculin B as a GBM radiosensitizer.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Glioblastoma/metabolism , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Actins/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microtubule-Associated Proteins/genetics , Neoplasm Transplantation , Nerve Tissue Proteins/genetics , Oncogene Proteins/genetics , Transcription Factors/genetics , YAP-Signaling Proteins
8.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804169

ABSTRACT

Glioblastoma multiforme (GBM) is a malignant primary brain tumor with poor patient prognosis. Although the standard treatment of GBM is surgery followed by chemotherapy and radiotherapy, often a small portion of surviving tumor cells acquire therapeutic resistance and become more aggressive. Recently, altered kinase expression and activity have been shown to determine metabolic flux in tumor cells and metabolic reprogramming has emerged as a tumor progression regulatory mechanism. Here we investigated novel kinase-mediated metabolic alterations that lead to acquired GBM radioresistance and malignancy. We utilized transcriptomic analyses within a radioresistant GBM orthotopic xenograft mouse model that overexpresses the dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3). We find that within GBM cells, radiation exposure induces DYRK3 expression and DYRK3 regulates mammalian target of rapamycin complex 1 (mTORC1) activity through phosphorylation of proline-rich AKT1 substrate 1 (PRAS40). We also find that DYRK3 knockdown inhibits dynamin-related protein 1 (DRP1)-mediated mitochondrial fission, leading to increased oxidative phosphorylation (OXPHOS) and reduced glycolysis. Importantly, enforced DYRK3 downregulation following irradiation significantly impaired GBM cell migration and invasion. Collectively, we suggest DYRK3 suppression may be a novel strategy for preventing GBM malignancy through regulating mitochondrial metabolism.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Dynamins/genetics , Glioblastoma/radiotherapy , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/radiation effects , Gene Expression Regulation, Neoplastic/radiation effects , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/radiation effects , Oxidative Phosphorylation/radiation effects , Proto-Oncogene Proteins c-akt/genetics , Radiation Tolerance/genetics , Xenograft Model Antitumor Assays
9.
Nutrients ; 14(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35010970

ABSTRACT

Increased triglyceride, cholesterol, and low-density lipoprotein (LDL) levels cause hyperlipidemia. Despite the availability of statin-based drugs to reduce LDL levels, additional effective treatments for reducing blood lipid concentrations are required. Herein, soybean hydrolysate prepared via peptic and tryptic hydrolysis promoted trans-intestinal cholesterol excretion (TICE) by increasing ATP-binding cassette subfamily G member 5 (ABCG5) and ABCG8 expression. The peptide sequence capable of promoting TICE was determined via HPLC and LC-MS/MS. Based on this, pure artificial peptides were synthesized, and the efficacy of the selected peptides was verified using cellular and hyperlipidemic mouse models. Soybean hydrolysates, including two bioactive peptides (ALEPDHRVESEGGL and SLVNNDDRDSYRLQSGDAL), promoted TICE via the expression of ABCG5 and ABCG8 in enterocytes. They downregulated expression of hepatic cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and CYP8B1 via expression of fibroblast growth factor 19 (FGF19) in a liver X receptor α (LXRa)-dependent pathway. Administration of bioactive peptides to hyperlipidemic mouse models by oral gavage reduced cholesterol levels in serum via upregulation of ABCG5 and ABCG8 expression in the proximal intestine and through fecal cholesterol excretion, upregulated FGF 15/19 expression, and suppressed hepatic bile acid synthesis. Oral administration of soybean-derived bioactive peptides elicited hypolipidemic effects by increasing TICE and decreasing hepatic cholesterol synthesis.


Subject(s)
Bile Acids and Salts/biosynthesis , Cholesterol/metabolism , Glycine max/chemistry , Hepatocytes/drug effects , Hyperlipidemias/drug therapy , Plant Proteins/pharmacology , Animals , Caco-2 Cells , Cell Survival/drug effects , Down-Regulation , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Humans , Hydrolysis , Male , Mice , Mice, Inbred C57BL , Plant Proteins/chemistry
10.
Front Genet ; 11: 566244, 2020.
Article in English | MEDLINE | ID: mdl-33133150

ABSTRACT

Ionizing radiation (IR) is a high-energy radiation whose biological effects depend on the irradiation doses. Low-dose radiation (LDR) is delivered during medical diagnoses or by an exposure to radioactive elements and has been linked to the occurrence of chronic diseases, such as leukemia and cardiovascular diseases. Though epidemiological research is indispensable for predicting and dealing with LDR-induced abnormalities in individuals exposed to LDR, little is known about epidemiological markers of LDR exposure. Moreover, difference in the LDR-induced molecular events in each organ has been an obstacle to a thorough investigation of the LDR effects and a validation of the experimental results in in vivo models. In this review, we summarized the recent reports on LDR-induced risk of organ-specifically arranged the alterations for a comprehensive understanding of the biological effects of LDR. We suggested that LDR basically caused the accumulation of DNA damages, controlled systemic immune systems, induced oxidative damages on peripheral organs, and even benefited the viability in some organs. Furthermore, we concluded that understanding of organ-specific responses and the biological markers involved in the responses is needed to investigate the precise biological effects of LDR.

11.
Cells ; 9(4)2020 04 02.
Article in English | MEDLINE | ID: mdl-32252322

ABSTRACT

Epithelial-mesenchymal transition (EMT) causes epithelial cells to lose their polarity and adhesion property, and endows them with migratory and invasive properties to enable them to become mesenchymal stem cells. EMT occurs throughout embryonic development, during wound healing, and in various pathological processes, including tumor progression. Considerable research in the last few decades has revealed that EMT is invariably related to tumor aggressiveness and metastasis. Apart from the interactions between numerous intracellular signaling pathways known to regulate EMT, extracellular modulators in the tumor microenvironment also influence tumor cells to undergo EMT, with extracellular vesicles (EVs) receiving increasing attention as EMT inducers. EVs comprise exosomes and microvesicles that carry proteins, nucleic acids, lipids, and other small molecules to stimulate EMT in cells. Among EVs, exosomes have been investigated in many studies, and their role has been found to be significant with respect to regulating intercellular communications. In this review, we summarize recent studies on exosomes and their cargoes that induce cancer-associated EMT. Furthermore, we describe the possible applications of exosomes as promising therapeutic strategies.


Subject(s)
Exosomes/metabolism , Neoplasms/pathology , Epithelial-Mesenchymal Transition , Humans , Signal Transduction , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...