Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 562(7727): 423-428, 2018 10.
Article in English | MEDLINE | ID: mdl-30305738

ABSTRACT

Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function1-4. However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer-an aggressive malignancy that is refractory to standard treatments and current immunotherapies5-8-induces endoplasmic reticulum stress and activates the IRE1α-XBP1 arm of the unfolded protein response9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α-XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α-XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α-XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.


Subject(s)
Endoribonucleases/metabolism , Mitochondria/metabolism , Ovarian Neoplasms/immunology , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , X-Box Binding Protein 1/metabolism , Amino Acid Transport Systems, Basic , Animals , Ascites/metabolism , Cell Respiration , Disease Progression , Endoplasmic Reticulum Stress , Female , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Glutamine/metabolism , Glycosylation , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/genetics , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Ovarian Neoplasms/pathology , Signal Transduction , Survival Rate , T-Lymphocytes/metabolism , Tumor Escape/immunology , Unfolded Protein Response , X-Box Binding Protein 1/biosynthesis , X-Box Binding Protein 1/deficiency
2.
Nat Immunol ; 18(7): 780-790, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553951

ABSTRACT

The acquisition of a protective vertebrate immune system hinges on the efficient generation of a diverse but self-tolerant repertoire of T cells by the thymus through mechanisms that remain incompletely resolved. Here we identified the endosomal-sorting-complex-required-for-transport (ESCRT) protein CHMP5, known to be required for the formation of multivesicular bodies, as a key sensor of thresholds for signaling via the T cell antigen receptor (TCR) that was essential for T cell development. CHMP5 enabled positive selection by promoting post-selection thymocyte survival in part through stabilization of the pro-survival protein Bcl-2. Accordingly, loss of CHMP5 in thymocyte precursor cells abolished T cell development, a phenotype that was 'rescued' by genetic deletion of the pro-apoptotic protein Bim or transgenic expression of Bcl-2. Mechanistically, positive selection resulted in the stabilization of CHMP5 by inducing its interaction with the deubiquitinase USP8. Our results thus identify CHMP5 as an essential component of the post-translational machinery required for T cell development.


Subject(s)
Cell Differentiation/immunology , Endosomal Sorting Complexes Required for Transport/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Thymocytes/immunology , Animals , Bcl-2-Like Protein 11/immunology , Endopeptidases/immunology , Immunoblotting , Immunoprecipitation , Mice , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-bcl-2/immunology , Real-Time Polymerase Chain Reaction , Signal Transduction/immunology , T-Lymphocytes/cytology , Thymocytes/cytology , Ubiquitin Thiolesterase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...