Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6612): 1290-1298, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36007018

ABSTRACT

Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.


Subject(s)
Cholesterol , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Receptors, G-Protein-Coupled , Cholesterol/metabolism , GTPase-Activating Proteins/metabolism , Humans , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Proteome/metabolism , Receptors, G-Protein-Coupled/metabolism
2.
Nat Cell Biol ; 23(3): 232-242, 2021 03.
Article in English | MEDLINE | ID: mdl-33686253

ABSTRACT

Lysosomes must maintain the integrity of their limiting membrane to ensure efficient fusion with incoming organelles and degradation of substrates within their lumen. Pancreatic cancer cells upregulate lysosomal biogenesis to enhance nutrient recycling and stress resistance, but it is unknown whether dedicated programmes for maintaining the integrity of the lysosome membrane facilitate pancreatic cancer growth. Using proteomic-based organelle profiling, we identify the Ferlin family plasma membrane repair factor Myoferlin as selectively and highly enriched on the membrane of pancreatic cancer lysosomes. Mechanistically, lysosomal localization of Myoferlin is necessary and sufficient for the maintenance of lysosome health and provides an early acting protective system against membrane damage that is independent of the endosomal sorting complex required for transport (ESCRT)-mediated repair network. Myoferlin is upregulated in human pancreatic cancer, predicts poor survival and its ablation severely impairs lysosome function and tumour growth in vivo. Thus, retargeting of plasma membrane repair factors enhances the pro-oncogenic activities of the lysosome.


Subject(s)
Biomarkers, Tumor/metabolism , Calcium-Binding Proteins/metabolism , Cell Proliferation , Intracellular Membranes/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Pancreatic Neoplasms/metabolism , Animals , Biomarkers, Tumor/genetics , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Intracellular Membranes/pathology , Lysosomes/genetics , Lysosomes/pathology , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Transgenic , Muscle Proteins/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Prognosis , Signal Transduction , Tumor Burden
3.
Dev Cell ; 56(3): 260-276.e7, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33308480

ABSTRACT

Lysosomes promote cellular homeostasis through macromolecular hydrolysis within their lumen and metabolic signaling by the mTORC1 kinase on their limiting membranes. Both hydrolytic and signaling functions require precise regulation of lysosomal cholesterol content. In Niemann-Pick type C (NPC), loss of the cholesterol exporter, NPC1, causes cholesterol accumulation within lysosomes, leading to mTORC1 hyperactivation, disrupted mitochondrial function, and neurodegeneration. The compositional and functional alterations in NPC lysosomes and nature of aberrant cholesterol-mTORC1 signaling contribution to organelle pathogenesis are not understood. Through proteomic profiling of NPC lysosomes, we find pronounced proteolytic impairment compounded with hydrolase depletion, enhanced membrane damage, and defective mitophagy. Genetic and pharmacologic mTORC1 inhibition restores lysosomal proteolysis without correcting cholesterol storage, implicating aberrant mTORC1 as a pathogenic driver downstream of cholesterol accumulation. Consistently, mTORC1 inhibition ameliorates mitochondrial dysfunction in a neuronal model of NPC. Thus, cholesterol-mTORC1 signaling controls organelle homeostasis and is a targetable pathway in NPC.


Subject(s)
Cholesterol/metabolism , Homeostasis , Intracellular Signaling Peptides and Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Niemann-Pick Disease, Type C/metabolism , Organelles/metabolism , Signal Transduction , Adult , Animals , Cells, Cultured , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Intracellular Membranes/metabolism , Lysosomes/metabolism , Mice , Mitochondria/metabolism , Models, Biological , Neurons/metabolism , Niemann-Pick C1 Protein , Proteolysis
4.
J Cachexia Sarcopenia Muscle ; 12(1): 177-191, 2021 02.
Article in English | MEDLINE | ID: mdl-33244887

ABSTRACT

BACKGROUND: With organismal aging, the hypothalamic-pituitary-gonadal (HPG) activity gradually decreases, resulting in the systemic functional declines of the target tissues including skeletal muscles. Although the HPG axis plays an important role in health span, how the HPG axis systemically prevents functional aging is largely unknown. METHODS: We generated muscle stem cell (MuSC)-specific androgen receptor (Ar) and oestrogen receptor 2 (Esr2) double knockout (dKO) mice and pharmacologically inhibited (Antide) the HPG axis to mimic decreased serum levels of sex steroid hormones in aged mice. After short-term and long-term sex hormone signalling ablation, the MuSCs were functionally analysed, and their aging phenotypes were compared with those of geriatric mice (30-month-old). To investigate pathways associated with sex hormone signalling disruption, RNA sequencing and bioinformatic analyses were performed. RESULTS: Disrupting the HPG axis results in impaired muscle regeneration [wild-type (WT) vs. dKO, P < 0.0001; Veh vs. Antide, P = 0.004]. The expression of DNA damage marker (in WT = 7.0 ± 1.6%, dKO = 32.5 ± 2.6%, P < 0.01; in Veh = 13.4 ± 4.5%, Antide = 29.7 ± 5.5%, P = 0.028) and senescence-associated ß-galactosidase activity (in WT = 3.8 ± 1.2%, dKO = 10.3 ± 1.6%, P < 0.01; in Veh = 2.1 ± 0.4%, Antide = 9.6 ± 0.8%, P = 0.005), as well as the expression levels of senescence-associated genes, p16Ink4a and p21Cip1 , was significantly increased in the MuSCs, indicating that genetic and pharmacological inhibition of the HPG axis recapitulates the progressive aging process of MuSCs. Mechanistically, the ablation of sex hormone signalling reduced the expression of transcription factor EB (Tfeb) and Tfeb target gene in MuSCs, suggesting that sex hormones directly induce the expression of Tfeb, a master regulator of the autophagy-lysosome pathway, and consequently autophagosome clearance. Transduction of the Tfeb in naturally aged MuSCs increased muscle mass [control geriatric MuSC transplanted tibialis anterior (TA) muscle = 34.3 ± 2.9 mg, Tfeb-transducing geriatric MuSC transplanted TA muscle = 44.7 ± 6.7 mg, P = 0.015] and regenerating myofibre size [eMyHC+ tdTomato+ myofibre cross-section area (CSA) in control vs. Tfeb, P = 0.002] after muscle injury. CONCLUSIONS: Our data show that the HPG axis systemically controls autophagosome clearance in MuSCs through Tfeb and prevents MuSCs from senescence, suggesting that sustained HPG activity throughout life regulates autophagosome clearance to maintain the quiescence of MuSCs by preventing senescence until advanced age.


Subject(s)
Autophagosomes , Myoblasts , Stem Cells , Animals , Cellular Senescence , Gonads , Hypothalamus , Mice , Muscle, Skeletal , Pituitary Gland , Regeneration
5.
Nat Commun ; 11(1): 6297, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293536

ABSTRACT

Autophagy is a catabolic process through which cytoplasmic components are degraded and recycled in response to various stresses including starvation. Recently, transcriptional and epigenetic regulations of autophagy have emerged as essential mechanisms for maintaining homeostasis. Here, we identify that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Pontin chromatin-remodeling factor under glucose starvation, and methylated Pontin binds Forkhead Box O 3a (FOXO3a). Genome-wide analyses and biochemical studies reveal that methylated Pontin functions as a platform for recruiting Tip60 histone acetyltransferase with increased H4 acetylation and subsequent activation of autophagy genes regulated by FOXO3a. Surprisingly, CARM1-Pontin-FOXO3a signaling axis can work in the distal regions and activate autophagy genes through enhancer activation. Together, our findings provide a signaling axis of CARM1-Pontin-FOXO3a and further expand the role of CARM1 in nuclear regulation of autophagy.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Autophagy/genetics , DNA Helicases/metabolism , Epigenesis, Genetic , Protein-Arginine N-Methyltransferases/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Acetylation , Animals , Arginine/metabolism , DNA Helicases/genetics , Fibroblasts , Forkhead Box Protein O3/metabolism , Gene Knockdown Techniques , Gene Knockout Techniques , Glucose/metabolism , HEK293 Cells , HeLa Cells , Hep G2 Cells , Histones/metabolism , Humans , Lysine Acetyltransferase 5/metabolism , Methylation , Mice, Transgenic , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/genetics , Signal Transduction/genetics , Trans-Activators/metabolism , Transcriptional Activation
6.
Dev Cell ; 54(2): 226-238, 2020 07 20.
Article in English | MEDLINE | ID: mdl-32610045

ABSTRACT

The lysosome is an essential catabolic organelle that consumes cellular biomass to regenerate basic building blocks that can fuel anabolic reactions. This simple view has evolved more recently to integrate novel functions of the lysosome as a key signaling center, which can steer the metabolic trajectory of cells in response to changes in nutrients, growth factors, and stress. Master protein kinases and transcription factors mediate the growth-promoting and catabolic activities of the lysosome and undergo a complex interplay that enables cellular adaptation to ever-changing metabolic conditions. Understanding how this coordination occurs will shed light on the fundamental logic of how the lysosome functions to control growth in the context of development, tissue homeostasis, and cancer.


Subject(s)
Autophagy/physiology , Cell Cycle/physiology , Cell Proliferation/physiology , Signal Transduction/physiology , Animals , Homeostasis/physiology , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism
7.
Nat Cell Biol ; 21(10): 1206-1218, 2019 10.
Article in English | MEDLINE | ID: mdl-31548609

ABSTRACT

Cholesterol activates the master growth regulator, mTORC1 kinase, by promoting its recruitment to the surface of lysosomes by the Rag guanosine triphosphatases (GTPases). The mechanisms that regulate lysosomal cholesterol content to enable mTORC1 signalling are unknown. Here, we show that oxysterol binding protein (OSBP) and its anchors at the endoplasmic reticulum (ER), VAPA and VAPB, deliver cholesterol across ER-lysosome contacts to activate mTORC1. In cells lacking OSBP, but not other VAP-interacting cholesterol carriers, the recruitment of mTORC1 by the Rag GTPases is inhibited owing to impaired transport of cholesterol to lysosomes. By contrast, OSBP-mediated cholesterol trafficking drives constitutive mTORC1 activation in a disease model caused by the loss of the lysosomal cholesterol transporter, Niemann-Pick C1 (NPC1). Chemical and genetic inactivation of OSBP suppresses aberrant mTORC1 signalling and restores autophagic function in cellular models of Niemann-Pick type C (NPC). Thus, ER-lysosome contacts are signalling hubs that enable cholesterol sensing by mTORC1, and targeting the sterol-transfer activity of these signalling hubs could be beneficial in patients with NPC.


Subject(s)
Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Niemann-Pick Diseases/metabolism , Receptors, Steroid/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Mechanistic Target of Rapamycin Complex 1/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Niemann-Pick C1 Protein , Receptors, Steroid/genetics , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
8.
Nat Chem Biol ; 15(8): 776-785, 2019 08.
Article in English | MEDLINE | ID: mdl-31285595

ABSTRACT

Autophagy is a lysosomal degradation pathway that eliminates aggregated proteins and damaged organelles to maintain cellular homeostasis. A major route for activating autophagy involves inhibition of the mTORC1 kinase, but current mTORC1-targeting compounds do not allow complete and selective mTORC1 blockade. Here, we have coupled screening of a covalent ligand library with activity-based protein profiling to discover EN6, a small-molecule in vivo activator of autophagy that covalently targets cysteine 277 in the ATP6V1A subunit of the lysosomal v-ATPase, which activates mTORC1 via the Rag guanosine triphosphatases. EN6-mediated ATP6V1A modification decouples the v-ATPase from the Rags, leading to inhibition of mTORC1 signaling, increased lysosomal acidification and activation of autophagy. Consistently, EN6 clears TDP-43 aggregates, a causative agent in frontotemporal dementia, in a lysosome-dependent manner. Our results provide insight into how the v-ATPase regulates mTORC1, and reveal a unique approach for enhancing cellular clearance based on covalent inhibition of lysosomal mTORC1 signaling.


Subject(s)
Autophagy/drug effects , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Autophagy/physiology , Cell Line , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Mice , Molecular Structure , Proto-Oncogene Proteins c-akt , Pyrazoles/pharmacology
9.
Mol Cell ; 70(1): 5-7, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625038

ABSTRACT

In this issue of Molecular Cell, Jia et al. (2018) identify a lysosomal damage-response pathway centered on galectin 8 and 9 that feeds back on mTORC1 signaling. In response to lysosome-damaging agents, galectins inhibits mTORC1, triggering a stress response that may help restore cellular homeostasis.


Subject(s)
Galectins , Sugars , Lysosomes , Signal Transduction , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...