Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(10)2021 May 11.
Article in English | MEDLINE | ID: mdl-34065008

ABSTRACT

In this paper, we propose a methodology for calculating the necessary spectrum requirements of aeronautical mobile airport communication system (AeroMACS) to provide various airport communication services. To accurately calculate the spectrum requirement, it is necessary to evaluate the AeroMACS traffic demand of the peak time and statistical data on the packet traffic generated at the airport. Because there is no AeroMACS traffic model and real trace data, we have developed the AeroMACS traffic simulator based on the report of Single European Sky Air Traffic Management Research (SESAR). To calculate the spectrum requirements, the AeroMACS traffic simulator is combined with the methodology of ITU-R M.1768-1. The developed traffic simulator reflects AeroMACS traffic priorities and can generate the required traffic according to its location in the airport. We observed the spectrum requirement by changing the number of sectors and the spectral efficiency. To show the feasibility of our methodology, we applied it to the case of Incheon International Airport in Korea. The simulation results show that the average bandwidth of 0.94 MHz is required in the ground area and 8.59 MHz is required in the entire airport.

2.
Sensors (Basel) ; 21(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923847

ABSTRACT

The recurrent neural network (RNN) model, which is a deep-learning network that can memorize past information, is used in this paper to memorize continuous movements in indoor positioning to reduce positioning error. To use an RNN model in Wi-Fi-fingerprint based indoor positioning, data set must be sequential. However, Wi-Fi fingerprinting only saves the received signal strength indicator for a location, so it cannot be used as RNN data. For this reason, we propose a movement path data generation technique that generates data for an RNN model for sequential positioning from Wi-Fi fingerprint data. Movement path data can be generated by creating an adjacency list for Wi-Fi fingerprint location points. However, creating an adjacency matrix for all location points requires a large amount of computation. This problem is solved by dividing indoor environment by K-means clustering and creating a cluster transition matrix based on the center of each cluster.

SELECTION OF CITATIONS
SEARCH DETAIL
...