Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(1): e2308592, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951603

ABSTRACT

Herein, an Au-coating layer adjusted on the surface of a Zn metal electrode that effectively suppresses the dendrite growth as well as the mechanisms underlying the dendrite suppression as a result of the zincophilic character of Au is introduced. For the Au-coated Zn metal symmetric cell, uniform deposition of Zn-derived compounds was revealed by operando synchrotron tomography. Microscopic studies demonstrate that the Au-coating layer is induced to form a new Zn-Au alloy during the initial Zn deposition, resulting in stabilized long-term stripping/plating of Zn via the 'embracing effect' that intimately accommodates Zn deposition for further cycles. This property supports the successful operation of symmetrical cells up to 50 mA cm-2 . According to Zn electrodeposition simulation, it is verified that the suppression of dendrite growth is responsible for the electro-conducting Au nanolayer that uniformly distributes the electric field and protects the Zn electrode from corrosion, ultimately promoting uniform Zn growth. The compatibility of the Au-coating layer for full cell configuration is verified using NaV3 O8 as a cathode material over 1 000 cycles. This finding provides a new pathway for the enhancement of the electrochemical performance of ZIBs by suppressing the dendritic growth of Zn by means of a zincophilic Au nanolayer.

2.
ACS Appl Mater Interfaces ; 14(7): 9242-9248, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35156800

ABSTRACT

Sulfide-based inorganic solid electrolytes have been considered promising candidates for all-solid-state batteries owing to their high ionic conductivity. Compared with oxide-based inorganic solid electrolytes which require high-temperature sintering, the intrinsic deformability of sulfide electrolytes enables the fabrication of all-solid-state batteries by a simple cold pressing method. Nevertheless, the performance of sulfide-based all-solid-state batteries is still unsatisfactory, owing to the insufficient interfacial properties within the composite electrodes. Using cold pressing alone, it is challenging to form intimate contacts with rigid oxide-based cathode materials. Here, we demonstrate a mild-temperature pressing (MP) method for the fabrication of all-solid-state batteries. The mild temperature (85 °C) increases the deformability of the sulfide and therefore helps to form more enhanced interfacial contacts in the composite cathode without side reactions. Compared with the conventional cold pressing cell, the MP cell possesses more favorable contacts, resulting in higher capacity, cyclability, and rate capability. In addition, we demonstrate that the charge-transfer resistance in composite cathodes dominates the electrochemical performance of all-solid-state batteries.

3.
Nano Lett ; 20(1): 625-635, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31825628

ABSTRACT

Silicon has a great potential as an alternative to graphite which is currently used commercially as an anode material in lithium-ion batteries (LIBs) because of its exceptional capacity and reasonable working potential. Herein, a low-cost and scalable approach is proposed for the production of high-performance silicon-carbon (Si-C) hybrid composite anodes for high-energy LIBs. The Si-C composite material is synthesized using a scalable microemulsion method by selecting silicon nanoparticles, using low-cost corn starch as a biomass precursor and finally conducting heat treatment under C3H6 gas. This produces a unique nano/microstructured Si-C hybrid composite comprised of silicon nanoparticles embedded in micron-sized amorphous carbon balls derived from corn starch that is capsuled by thin graphitic carbon layer. Such a dual carbon matrix tightly surrounds the silicon nanoparticles that provides high electronic conductivity and significantly decreases the absolute stress/strain of the material during multiple lithiation-delithiation processes. The Si-C hybrid composite anode demonstrates a high capacity of 1800 mAh g-1, outstanding cycling stability with capacity retention of 80% over 500 cycles, and fast charge-discharge capability of 12 min. Moreover, the Si-C composite anode exhibits good acceptability in practical LIBs assembled with commercial Li[Ni0.6Co0.2Mn0.2]O2 and Li[Ni0.80Co0.15Al0.05]O2 cathodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...