Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3294, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632266

ABSTRACT

Phase diagrams of materials are typically based on a static order parameter, but it faces challenges when distinguishing subtle phase changes, such as re-ordering. Here, we report a dynamic nonequilibrium order parameter termed re-order parameter to determine subtle phases and their transitions in interacting magnets. The dynamical precession of magnetization, so-called magnon, premises as a reliable re-order parameter of strong spin-orbit coupled magnets. We employ orthoferrites YFeO3 and its Mn-doped variations, where diverse magnetic phases, including canted antiferromagnetic (Γ4) and collinear antiferromagnetic (Γ1) states, have been well-established. Low-energy magnon uncovers the spin-orbit coupling-induced subtle magnetic structures, resulting in distinct terahertz emissions. The temporal and spectral parameters of magnon emission exhibit characteristics akin to BCS-type order parameters, constructing the magnetic phase diagram of Mn-doped YFeO3. This approach further reveals a concealed ferrimagnetic phase within the Γ1 state, underscoring its potential to search for hidden phases of materials, completing their phase diagrams.

2.
Sci Adv ; 10(12): eadk4282, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38507483

ABSTRACT

Polarons are prevalent in condensed matter systems with strong electron-phonon coupling. The adiabaticity of the polaron relates to its transport properties and spatial extent. To date, only adiabatic small polaron formation has been measured following photoexcitation. The lattice reorganization energy is large enough that the first electron-optical phonon scattering event creates a small polaron without requiring substantial carrier thermalization. We measure that frustrating the iron-centered octahedra in the rare-earth orthoferrite ErFeO3 leads to antiadiabatic polaron formation. Coherent charge hopping between neighboring Fe3+─Fe2+ sites is measured with transient extreme ultraviolet spectroscopy and lasts several picoseconds before the polaron forms. The resulting small polaron formation time is an order of magnitude longer than previous measurements and indicates a shallow potential well, even in the excited state. The results emphasize the importance of considering dynamic electron-electron correlations, not just electron-phonon-induced lattice changes, for small polarons for transport, catalysis, and photoexcited applications.

3.
Sci Rep ; 13(1): 7105, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130957

ABSTRACT

Magnetic anisotropy is crucial in examining suitable materials for magnetic functionalities because it affects their magnetic characteristics. In this study, disordered-perovskite RCr0.5Fe0.5O3 (R = Gd, Er) single crystals were synthesized and the influence of magnetic anisotropy and additional ordering of rare-earth moments on cryogenic magnetocaloric properties was investigated. Both GdCr0.5Fe0.5O3 (GCFO) and ErCr0.5Fe0.5O3 (ECFO) crystallize in an orthorhombic Pbnm structure with randomly distributed Cr3+ and Fe3+ ions. In GCFO, the long-range order of Gd3+ moments emerges at a temperature of TGd (the ordering temperature of Gd3+ moments) = 12 K. The relatively isotropic nature of large Gd3+ moment originating from zero orbital angular momentum exhibits giant and virtually isotropic magnetocaloric effect (MCE), with a maximum magnetic entropy change of [Formula: see text] ≈ 50.0 J/kg·K. In ECFO, the highly anisotropic magnetizations result in a large rotating MCE characterized by a rotating magnetic entropy change [Formula: see text] = 20.8 J/kg·K. These results indicate that a detailed understanding of magnetically anisotropic characteristics is the key for exploring improved functional properties in disordered perovskite oxides.

4.
Sci Rep ; 13(1): 3391, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36854958

ABSTRACT

The influence of magnetocrystalline anisotropy in antiferromagnets is evident in a spin flip or flop transition. Contrary to spin flops, a spin-flip transition has been scarcely presented due to its specific condition of relatively strong magnetocrystalline anisotropy and the role of spin-flips on anisotropic phenomena has not been investigated in detail. In this study, we present antiferromagnet-based functional properties on an itinerant Ising antiferromagnet Ca0.9Sr0.1Co2As2. In the presence of a rotating magnetic field, anomalous Hall conductivity and anisotropic magnetoresistance are demonstrated, the effects of which are maximized above the spin-flip transition. Moreover, a joint experimental and theoretical study is conducted to provide an efficient tool to identify various spin states, which can be useful in spin-processing functionalities.

5.
Sci Rep ; 12(1): 12866, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896804

ABSTRACT

Spin-flip transition can occur in antiferromagnets with strong magnetocrystalline anisotropy, inducing a significant modification of the anisotropic magnetic properties through phase conversion. In contrast to ferromagnets, antiferromagnets have not been thoroughly examined in terms of their anisotropic characteristics. We investigated the magnetic-field and angle-dependent magnetic properties of Ising-type antiferromagnetic Ca0.9Sr0.1Co2As2 using magnetic torque measurements. An A-type antiferromagnetic order emerges below TN = 97 K aligned along the magnetically easy c-axis. The reversal of the angle-dependent torque across the spin-flip transition was observed, revealing the strong influence of the magnetocrystalline anisotropy on the magnetic properties. Based on the easy-axis anisotropic spin model, we theoretically generated torque data and identified specific spin configurations associated with the magnetic torque variation in the presence of a rotating magnetic field. Our results enrich fundamental and applied research on diverse antiferromagnetic compounds by shedding new light on the distinct magnetic features of the Ising-type antiferromagnet.

6.
Sci Rep ; 11(1): 23786, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893755

ABSTRACT

Double-perovskite multiferroics have been investigated because alternating orders of magnetic ions act as distinct magnetic origins for ferroelectricity. In Yb2CoMnO6, the frustrated antiferromagnetic order emerging at TN = 52 K induces ferroelectric polarization perpendicular to the c axis through cooperative O2- shifts via the symmetric exchange striction. In our detailed measurements of the magnetoelectric properties of single-crystalline Yb2CoMnO6, we observe full ferromagnetic-like hysteresis loops that are strongly coupled to the dielectric constant and ferroelectric polarization at various temperatures below TN. Unlike Lu2CoMnO6 with non-magnetic Lu3+ ions, we suggest the emergence of additional ferroelectric polarization along the c axis below the ordering temperature of magnetic Yb3+ ions, TYb ≈ 20 K, based on the spin structure established from recent neutron diffraction experiments. While the proposed description for additional ferroelectricity, ascribed to the symmetric exchange striction between Yb3+ and Co2+/Mn4+ magnetic moments, is clearly given, anomalies of dielectric constants along the c axis are solely observed. Our interesting findings on magnetoelectric hysteresis and the possible development of additional ferroelectricity reveal notable characteristics of double perovskites and provide essential guidance for the further examination of magnetoelectric functional properties.

7.
Sci Rep ; 11(1): 9408, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33931698

ABSTRACT

Magnetic properties can be manipulated to enhance certain functionalities by tuning different material processing parameters. Here, we present the controllable magnetization steps of hysteresis loops in double-perovskite single crystals of Eu2CoMnO6. Ferromagnetic order emerges below TC ≈ 122 K along the crystallographic c axis. The difficulty in altering Co2+ and Mn4+ ions naturally induces additional antiferromagnetic clusters in this system. Annealing the crystals in different gas environments modifies the mixed magnetic state, and results in the retardation (after O2-annealing) and bifurcation (after Ar-annealing) of the magnetization steps of isothermal magnetization. This remarkable variation offers an efficient approach for improving the magnetic properties of double-perovskite oxides.

8.
Sci Rep ; 10(1): 12362, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703982

ABSTRACT

Strongly correlated materials with multiple order parameters provide unique insights into the fundamental interactions in condensed matter systems and present opportunities for innovative technological applications. A class of antiferromagnetic honeycomb lattices compounds, A4B2O9 (A = Co, Fe, Mn; B = Nb, Ta), have been explored owing to the occurrence of linear magnetoelectricity. From our investigation of magnetoelectricity on single crystalline Co4Ta2O9, we discovered strongly nonlinear and antisymmetric magnetoelectric behavior above the spin-flop transition for magnetic fields applied along two orthogonal in-plane directions. This observation suggests that two types of inequivalent Co2+ sublattices generate magnetic-field-dependent ferroelectric polarization with opposite signs. The results motivate fundamental and applied research on the intriguing magnetoelectric characteristics of these buckled-honeycomb lattice materials.

9.
Sci Rep ; 10(1): 11825, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678242

ABSTRACT

In rare-earth orthoferrites, strongly correlated order parameters have been thoroughly investigated, which aims to find multiple functionalities such as multiferroic or magnetoelectric properties. We have discovered highly anisotropic and nonlinear magnetodielectric effects from detailed measurements of magnetoelectric properties in single-crystalline orthoferrite, ErFeO3. Isothermal dielectric constant varies in shapes and signs depending on the relative orientations between the external electric and magnetic fields, which may be ascribed to the spin-phonon couplings. In addition, a dielectric constant with both electric and magnetic fields along the c axis exhibits two symmetric sharp anomalies, which are closely relevant to the spin-flop transition, below the ordering temperature of Er3+ spins, TEr = 3.4 K. We speculate that the magnetostriction from the exchange couplings between Er3+ and Fe3+ magnetic moments would be responsible for this relationship between electric and magnetic properties. Our results present significant characteristics of the orthoferrite compounds and offer a crucial guide for exploring suitable materials for magnetoelectric functional applications.

10.
Biomol Ther (Seoul) ; 25(5): 528-534, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28655072

ABSTRACT

Placenta is a special organ that contains many nutrients such as growth factors, minerals, and bioactive peptides. Dipeptides of glycine and leucine are major components of porcine placenta extracts (PPE) that has been used as an alternative of human placenta extracts. In this study, we investigated whether major peptides of PPE, Glycyl-L-Leucine (Gly-Leu), L-Leucyl-Glycine (Leu-Gly), and L-Leucyl-L-Leucine (Leu-Leu), affect skin hydration and elasticity in vitro and in vivo. We found that Gly-Leu and Leu-Gly dipeptides induced the expression of transglutaminase 1 in normal human epidermal keratinocytes (NHEKs) whereas Leu-Leu dipeptides did not. Treatment with Gly-Leu or Leu-Gly significantly increased hyaluronan (HA) synthesis in NHEKs and the upregulation of hyaluronan synthase 2 (HAS2) mRNA level was confirmed. In addition, elastase activity was inhibited in NHEKs treated with Gly-Leu or Leu-Gly dipeptides. Oral administration of Gly-Leu or Leu-Gly dipeptides increased skin hydration and elasticity in UVB-irradiated hairless mice. The significant upregulation of HA in UVB-irradiated hairless mice was observed in response to oral administration of Gly-Leu or Leu-Gly. These results suggest that the major dipeptides of porcine placenta, Gly-Leu and Leu-Gly, are potentially active ingredients for skin moisturization formulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...