Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569978

ABSTRACT

This study presents a series of shock-tube tests conducted on structural panels using ammonium nitrate fuel oil (ANFO) as the explosive. The characteristics of the blast waves propagating through the shock tube were analyzed by measuring the pressure generated at specific locations inside the shock tube. The extent of differences in blast pressure generated in a confined space, such as the shock tube, was compared to that predicted by the proposed method in the Unified Facilities Criteria 3-340-02 report. The target specimens of this study were plain reinforced concrete (RC), high-performance fiber-reinforced cementitious composites (HPFRCCs), and composite panels. Polyurea-coated RC panels and steel plate grid structure-attached RC panels were used as composite panels to evaluate the effectiveness of the coating and structural damping methods on the enhancement of structural blast resistance. The tests were conducted with different ANFO charges, and the crack patterns and lengths on the rear surface of each panel were measured. Based on the measured results, discussions regarding the blast resistance capacities of each panel type are provided.

2.
Nano Converg ; 8(1): 17, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34097156

ABSTRACT

A rechargeable lithium-oxygen battery (LOB) operates via the electrochemical formation and decomposition of solid-state Li2O2 on the cathode. The rational design of the cathode nanoarchitectures is thus required to realize high-energy-density and long-cycling LOBs. Here, we propose a cathode nanoarchitecture for LOBs, which is composed of mesoporous carbon (MPC) integrated with carbon nanotubes (CNTs). The proposed design has the advantages of the two components. MPC provides sufficient active sites for the electrochemical reactions and free space for Li2O2 storage, while CNT forests serve as conductive pathways for electron and offer additional reaction sites. Results show that the synergistic architecture of MPC and CNTs leads to improvements in the capacity (~ 18,400 mAh g- 1), rate capability, and cyclability (~ 200 cycles) of the CNT-integrated MPC cathode in comparison with MPC.

3.
ChemSusChem ; 11(18): 3184-3190, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30044545

ABSTRACT

The use of solid electrolytes provides a technical solution to address the safety issues of lithium-ion batteries and enables a bipolar design of high-voltage and high-energy battery modules. The bipolar design avoids unnecessary components and parts for packaging and electrical connection; therefore, it facilitates an increase in the volumetric energy density of the battery, while enabling easy build-up of total output voltage. Herein, the design and construction of a multilayered, bipolar-type, all-solid-state battery (ASSB) from a biphasic solid electrolyte (BSE) based on inorganic Li0.29 La0.57 TiO3 perovskite and poly(ethylene oxide) (PEO) are reported. A flexible and freestanding BSE membrane exhibits high Li+ conductivity of about 1.2×10-4  S cm-1 , and shows enhanced electrochemical/thermal stability, in comparison to a PEO-only solid electrolyte. A single-layered ASSB assembled with a BSE shows promising electrochemical performance, as evidenced by a high reversible capacity of about 123 mA h g-1 and excellent cycling stability over 100 cycles. Furthermore, a proof-of-concept bipolar ASSB comprising three unit cells connected in series is constructed by using the BSE membrane and Al/Cu-cladded bipolar plates. The bipolar ASSB shows high thermal stability and operates reversibly without any internal short circuit or current leakage during charge-discharge cycles; this demonstrates that BSEs provide a promising approach to the design and fabrication of bipolar ASSBs with improved safety and high energy density.

4.
ChemSusChem ; 10(10): 2175-2181, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28317277

ABSTRACT

All-solid-state lithium batteries offer notable advantages over conventional Li-ion batteries with liquid electrolytes in terms of energy density, stability, and safety. To realize this technology, it is critical to develop highly reliable solid-state inorganic electrolytes with high ionic conductivities and adequate processability. Li1+x Alx Ti2-x (PO4 )3 (LATP) with a NASICON (Na superionic conductor)-like structure is regarded as a potential solid electrolyte, owing to its high "bulk" conductivity (ca. 10-3  S cm-1 ) and excellent stability against air and moisture. However, the solid LATP electrolyte still suffers from a low "total" conductivity, mainly owing to the blocking effect of grain boundaries to Li+ conduction. In this study, an LATP-Bi2 O3 composite solid electrolyte shows very high total conductivity (9.4×10-4  S cm-1 ) at room temperature. Bi2 O3 acts as a microstructural modifier to effectively reduce the fabrication temperature of the electrolyte and to enhance its ionic conductivity. Bi2 O3 promotes the densification of the LATP electrolyte, thereby improving its structural integrity, and at the same time, it facilitates Li+ conduction, leading to reduced grain-boundary resistance. The feasibility of the LATP-Bi2 O3 composite electrolyte in all-solid-state Li batteries is also examined in this study.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Lithium/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , X-Ray Diffraction
5.
Sci Rep ; 6: 26195, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27189834

ABSTRACT

There is a great deal of current interest in the development of rechargeable sodium (Na)-ion batteries (SIBs) for low-cost, large-scale stationary energy storage systems. For the commercial success of this technology, significant progress should be made in developing robust anode (negative electrode) materials with high capacity and long cycle life. Sn-P compounds are considered promising anode materials that have considerable potential to meet the required performance of SIBs, and they have been typically prepared by high-energy mechanical milling. Here, we report Sn-P-based anodes synthesised through solvothermal transformation of Sn metal and their electrochemical Na storage properties. The temperature and time period used for solvothermal treatment play a crucial role in determining the phase, microstructure, and composition of the Sn-P compound and thus its electrochemical performance. The Sn-P compound prepared under an optimised solvothermal condition shows excellent electrochemical performance as an SIB anode, as evidenced by a high reversible capacity of ~560 mAh g(-1) at a current density of 100 mA g(-1) and cycling stability for 100 cycles. The solvothermal route provides an effective approach to synthesising Sn-P anodes with controlled phases and compositions, thus tailoring their Na storage behaviour.

SELECTION OF CITATIONS
SEARCH DETAIL
...