Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
PLoS One ; 19(5): e0285655, 2024.
Article in English | MEDLINE | ID: mdl-38753593

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the sinuses or nose. Persistent inflammatory responses can lead to tissue remodeling, which is a pathological characteristics of CRS. Activation of fibroblasts in the nasal mucosal stroma, differentiation and collagen deposition, and subepithelial fibrosis have been associated with CRS. OBJECTIVES: We aimed to assess the inhibitory effects of doxycycline and deoxycholic acid-polyethyleneimine conjugate (DA3-Doxy) on myofibroblast differentiation and extracellular matrix (ECM) production in nasal fibroblasts stimulated with TGF-ß1. METHODS: To enhance efficacy, we prepared DA3-Doxy using a conjugate of low-molecular-weight polyethyleneimine (PEI) (MW 1800) and deoxycholic acid (DA) and Doxy. The synthesis of the DA3-Doxy polymer was confirmed using nuclear magnetic resonance, and the critical micelle concentration required for cationic micelle formation through self-assembly was determined. Subsequently, the Doxy loading efficiency of DA3 was assessed. The cytotoxicity of Doxy, DA3, PEI, and DA-Doxy in nasal fibroblasts was evaluated using the WST-1 assay. The anti-tissue remodeling and anti-inflammatory effects of DA3-Doxy and DA3 were examined using real-time polymerase chain reaction (Real-time PCR), immunocytochemistry, western blot, and Sircol assay. RESULTS: Both DA3 and DA3-Doxy exhibited cytotoxicity at 10 µg/ml in nasal fibroblasts. Doxy partially inhibited α-smooth muscle actin, collagen types I and III, and fibronectin. However, DA3-Doxy significantly inhibited α-SMA, collagen types I and III, and fibronectin at 5 µg/ml. DA3-Doxy also modulated TGF-ß1-induced changes in the expression of MMP 1, 2, and 9. Nonetheless, TGF-ß1-induced expression of MMP3 was further increased by DA3-Doxy. The expression of TIMP 1 and 2 was partially reduced with 5 µg/ml DA3-Doxy. CONCLUSIONS: Although initially developed for the delivery of genetic materials or drugs, DA3 exhibits inhibitory effects on myofibroblast differentiation and ECM production. Therefore, it holds therapeutic potential for CRS, and a synergistic effect can be expected when loaded with CRS treatment drugs.


Subject(s)
Cell Differentiation , Deoxycholic Acid , Doxycycline , Fibroblasts , Polyethyleneimine , Humans , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Deoxycholic Acid/chemistry , Deoxycholic Acid/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Differentiation/drug effects , Doxycycline/pharmacology , Doxycycline/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Transforming Growth Factor beta1/metabolism , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/cytology , Actins/metabolism
2.
Tomography ; 10(4): 504-519, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38668397

ABSTRACT

To assess the impact of a deep learning (DL) denoising reconstruction algorithm applied to identical patient scans acquired with two different voxel dimensions, representing distinct spatial resolutions, this IRB-approved prospective study was conducted at a tertiary pediatric center in compliance with the Health Insurance Portability and Accountability Act. A General Electric Signa Premier unit (GE Medical Systems, Milwaukee, WI) was employed to acquire two DTI (diffusion tensor imaging) sequences of the left knee on each child at 3T: an in-plane 2.0 × 2.0 mm2 with section thickness of 3.0 mm and a 2 mm3 isovolumetric voxel; neither had an intersection gap. For image acquisition, a multi-band DTI with a fat-suppressed single-shot spin-echo echo-planar sequence (20 non-collinear directions; b-values of 0 and 600 s/mm2) was utilized. The MR vendor-provided a commercially available DL model which was applied with 75% noise reduction settings to the same subject DTI sequences at different spatial resolutions. We compared DTI tract metrics from both DL-reconstructed scans and non-denoised scans for the femur and tibia at each spatial resolution. Differences were evaluated using Wilcoxon-signed ranked test and Bland-Altman plots. When comparing DL versus non-denoised diffusion metrics in femur and tibia using the 2 mm × 2 mm × 3 mm voxel dimension, there were no significant differences between tract count (p = 0.1, p = 0.14) tract volume (p = 0.1, p = 0.29) or tibial tract length (p = 0.16); femur tract length exhibited a significant difference (p < 0.01). All diffusion metrics (tract count, volume, length, and fractional anisotropy (FA)) derived from the DL-reconstructed scans, were significantly different from the non-denoised scan DTI metrics in both the femur and tibial physes using the 2 mm3 voxel size (p < 0.001). DL reconstruction resulted in a significant decrease in femorotibial FA for both voxel dimensions (p < 0.01). Leveraging denoising algorithms could address the drawbacks of lower signal-to-noise ratios (SNRs) associated with smaller voxel volumes and capitalize on their better spatial resolutions, allowing for more accurate quantification of diffusion metrics.


Subject(s)
Algorithms , Deep Learning , Diffusion Tensor Imaging , Growth Plate , Humans , Diffusion Tensor Imaging/methods , Prospective Studies , Child , Male , Female , Growth Plate/diagnostic imaging , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods
3.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396957

ABSTRACT

This study aimed to identify and evaluate drug candidates targeting the kinase inhibitory region of suppressor of cytokine signaling (SOCS) 3 for the treatment of allergic rhinitis (AR). Utilizing an artificial intelligence (AI)-based new drug development platform, virtual screening was conducted to identify compounds inhibiting the SH2 domain binding of SOCS3. Luminescence assays assessed the ability of these compounds to restore JAK-2 activity diminished by SOCS3. Jurkat T and BEAS-2B cells were utilized to investigate changes in SOCS3 and STAT3 expression, along with STAT3 phosphorylation in response to the identified compounds. In an OVA-induced allergic rhinitis mouse model, we measured serum levels of total IgE and OVA-specific IgE, performed real-time PCR on nasal mucosa samples to quantify Th2 cytokines and IFN-γ expression, and conducted immunohistochemistry to analyze eosinophil levels. Screening identified 20 hit compounds with robust binding affinities. As the concentration of SOCS3 increased, a corresponding decrease in JAK2 activity was observed. Compounds 5 and 8 exhibited significant efficacy in restoring JAK2 activity without toxicity. Treatment with these compounds resulted in reduced SOCS3 expression and the reinstatement of STAT3 phosphorylation in Jurkat T and BEAS-2B cells. In the OVA-induced allergic rhinitis mouse model, compounds 5 and 8 effectively alleviated nasal symptoms and demonstrated lower levels of immune markers compared to the allergy group. This study underscores the promising nonclinical efficacy of compounds identified through the AI-based drug development platform. These findings introduce innovative strategies for the treatment of AR and highlight the potential therapeutic value of targeting SOCS3 in managing AR.


Subject(s)
Artificial Intelligence , Rhinitis, Allergic , Mice , Animals , Ovalbumin , Nasal Mucosa/metabolism , Cytokines/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Immunoglobulin E/metabolism , Mice, Inbred BALB C , Disease Models, Animal
4.
J Comput Assist Tomogr ; 48(1): 150-155, 2024.
Article in English | MEDLINE | ID: mdl-37551157

ABSTRACT

OBJECTIVE: Imaging is crucial in the assessment of head and neck cancers for site, extension, and enlarged lymph nodes. Restriction spectrum imaging (RSI) is a new diffusion-weighted magnetic resonance imaging (MRI) technique that enhances the ability to differentiate aggressive cancer from low-grade or benign tumors and helps guide treatment and biopsy. Its contribution to imaging of brain and prostate tumors has been previously published. However, there are no prior studies using RSI sequence in head and neck tumors. The purpose of this study was to evaluate the feasibility of performing RSI in head and neck cancer. METHODS: An additional RSI sequence was added in the routine MRI neck protocol for 13 patients diagnosed with head and neck cancer between November 2018 and April 2019. Restriction spectrum imaging sequence was performed with b values of 0, 500, 1500, and 3000 s/mm 2 and 29 directions on 1.5T magnetic resonance scanners.Diffusion-weighted imaging (DWI) images and RSI images were compared according to their ability to detect the primary malignancy and possible metastatic lymph nodes. RESULTS: In 71% of the patients, RSI outperformed DWI in detecting the primary malignancy and possible metastatic lymph nodes, whereas in the remaining cases, the 2 were comparable. In 66% of the patients, RSI detected malignant lymph nodes that DWI/apparent diffusion coefficient failed to detect. CONCLUSIONS: This is the first study of RSI in head and neck imaging and showed its superiority over the conventional DWI sequence. Because of its ability to differentiate benign and malignant lymph nodes in some cases, the addition of RSI to routine head and neck MRI should be considered.


Subject(s)
Head and Neck Neoplasms , Male , Humans , Pilot Projects , Head and Neck Neoplasms/diagnostic imaging , Lymph Nodes/pathology , Neck/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Sensitivity and Specificity
5.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37985454

ABSTRACT

Kinases play a vital role in regulating essential cellular processes, including cell cycle progression, growth, apoptosis, and metabolism, by catalyzing the transfer of phosphate groups from adenosing triphosphate to substrates. Their dysregulation has been closely associated with numerous diseases, including cancer development, making them attractive targets for drug discovery. However, accurately predicting the binding affinity between chemical compounds and kinase targets remains challenging due to the highly conserved structural similarities across the kinome. To address this limitation, we present KinScan, a novel computational approach that leverages large-scale bioactivity data and integrates the Multi-Scale Context Aware Transformer framework to construct a virtual profiling model encompassing 391 protein kinases. The developed model demonstrates exceptional prediction capability, distinguishing between kinases by utilizing structurally aligned kinase binding site features derived from multiple sequence alignment for fast and accurate predictions. Through extensive validation and benchmarking, KinScan demonstrated its robust predictive power and generalizability for large-scale kinome-wide profiling and selectivity, uncovering associations with specific diseases and providing valuable insights into kinase activity profiles of compounds. Furthermore, we deployed a web platform for end-to-end profiling and selectivity analysis, accessible at https://kinscan.drugonix.com/softwares/kinscan.


Subject(s)
Drug Discovery , Protein Kinases , Protein Kinases/metabolism , Phosphorylation , Protein Binding , Artificial Intelligence
6.
J Otolaryngol Head Neck Surg ; 52(1): 69, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37876017

ABSTRACT

BACKGROUND: Biocompatibility and stability of three-dimensional printed polycaprolactone mesh grafts for nasal surgery are proven in both animal and human models. However, their safety and durability as batten grafts for caudal septal deviation has not been documented. This study was designed to investigate the efficacy and safety of three-dimensional printed polycaprolactone mesh batten graft in septoplasty using the wedge resection technique for the correction of caudal septal deviation. METHODS: This retrospective study reviewed the medical records of 20 patients aged ≥ 18 years with caudal septal deviation who underwent septoplasty with wedge resection and three-dimensional printed polycaprolactone mesh graft from a tertiary medical center in South Korea, between December 1, 2019 and May 31, 2021. Those without nasal obstruction before surgery or with a short follow-up period (< 28 days) were excluded from the survey analysis. RESULTS: Of the 20 patients (mean age, 48.0 [range, 19-65] years), 17 (85.0%) were male, and three (15.0%) were female. A significant change was noted in the mean nasal obstruction symptom evaluation score (68.2 vs. 15.0, P < .001) in the 17 patients included in the analysis. Postoperative endoscopic evaluation revealed a straight septum in 19/20 (95.0%) patients, and no complications were noted in the postoperative follow-up period of up to 364 days. CONCLUSIONS: The three-dimensional printed polycaprolactone nasal mesh is safe and provides adequate support to resist the intrinsic memory of the cartilage of the caudal septum. In addition to nasal surgeries, it has great potential as a graft in other reconstructive surgeries. Trial registration Retrospectively registered.


Subject(s)
Nasal Obstruction , Rhinoplasty , Humans , Male , Female , Middle Aged , Nasal Obstruction/surgery , Treatment Outcome , Retrospective Studies , Surgical Mesh/adverse effects , Nasal Septum/surgery , Rhinoplasty/methods , Printing, Three-Dimensional
7.
J Korean Soc Radiol ; 84(4): 891-899, 2023 Jul.
Article in Korean | MEDLINE | ID: mdl-37559812

ABSTRACT

Purpose: To survey perceptions of certified physicians on the protocol of chest CT in patients with coronavirus (COVID-19) using a negative pressure isolation stretcher (NPIS). Materials and Methods: This study collected questionnaire responses from a total of 27 certified physicians who had previously performed chest CT with NPIS in COVID-19 isolation hospitals. Results: The nine surveyed hospitals performed an average of 116 chest CT examinations with NPIS each year. Of these, an average of 24 cases (21%) were contrast chest CT. Of the 9 pulmonologists we surveyed, 5 (56%) agreed that patients who showed abnormalities in serum D-dimer required contrast chest CT. All 9 surveyed radiologists agreed that the image quality of the chest CT with NPIS was sufficient for CT image interpretation regarding pneumonia or pulmonary embolism. Furthermore, in our 9 surveyed infectionologists, 5 (56%) agreed that a risk of secondary infection in the CT room after temporary opening of NPIS could be prevented through a process of disinfection. Conclusion: Experienced physicians considered that the effects of NIPS on chest CT image quality was minimal in patients with COVID-19, and the risk of CT room contamination was easily controlled.

8.
Stem Cell Res Ther ; 14(1): 153, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280695

ABSTRACT

BACKGROUND: Adipose tissue is known to serve as an abundant and readily accessible source of adipose-derived stem cells (ADSCs) as an alternative to bone marrow. Collagenase is one of the most widely used methods for the isolation of ADSCs from adipose tissue, but it takes a long time, and there are also debates about safety. We propose an ultrasonic cavitation-treated method that can significantly reduce time and avoid the problem of using xenogeneic enzymes in ADSCs isolation. METHODS: ADSCs were isolated from adipose tissue using the enzyme treatment method and the ultrasonic cavitation treatment method. Cell proliferation was measured using cell viability assay. The expression levels of the surface markers of ADSCs were estimated by real-time PCR. After, ADSCs were cultured in chondrogenic, osteogenic, or adipogenic differentiation medium; the differentiation potential of ADCSs was analyzed by Alcian blue, Alizarin Red S, Oil Red O, and real-time PCR. RESULTS: The cells treated with collagenase and ultrasound had similar cell yields and proliferation after isolation. The difference in the expression of surface markers of ADSCs was not statistically significant. ADSCs showed differentiation potential into adipocytes, osteocytes, and chondrocytes, and there was no difference between the enzyme treatment method and the ultrasonic cavitation treatment method. The yield of the ADSC increased in time- and intensity dependently. CONCLUSIONS: Ultrasound certainly serves as a promising method in advancing ADSC isolation technology.


Subject(s)
Mesenchymal Stem Cells , Stem Cells , Stem Cells/metabolism , Adipose Tissue , Adipocytes/metabolism , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured
9.
Sci Rep ; 13(1): 10268, 2023 06 24.
Article in English | MEDLINE | ID: mdl-37355672

ABSTRACT

The discovery of selective and potent kinase inhibitors is crucial for the treatment of various diseases, but the process is challenging due to the high structural similarity among kinases. Efficient kinome-wide bioactivity profiling is essential for understanding kinase function and identifying selective inhibitors. In this study, we propose AiKPro, a deep learning model that combines structure-validated multiple sequence alignments and molecular 3D conformer ensemble descriptors to predict kinase-ligand binding affinities. Our deep learning model uses an attention-based mechanism to capture complex patterns in the interactions between the kinase and the ligand. To assess the performance of AiKPro, we evaluated the impact of descriptors, the predictability for untrained kinases and compounds, and kinase activity profiling based on odd ratios. Our model, AiKPro, shows good Pearson's correlation coefficients of 0.88 and 0.87 for the test set and for the untrained sets of compounds, respectively, which also shows the robustness of the model. AiKPro shows good kinase-activity profiles across the kinome, potentially facilitating the discovery of novel interactions and selective inhibitors. Our approach holds potential implications for the discovery of novel, selective kinase inhibitors and guiding rational drug design.


Subject(s)
Deep Learning , Ligands , Sequence Alignment , Drug Design , Eye, Artificial , Protein Kinase Inhibitors/pharmacology
10.
Cancers (Basel) ; 15(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37174039

ABSTRACT

Cancer care increasingly relies on imaging for patient management. The two most common cross-sectional imaging modalities in oncology are computed tomography (CT) and magnetic resonance imaging (MRI), which provide high-resolution anatomic and physiological imaging. Herewith is a summary of recent applications of rapidly advancing artificial intelligence (AI) in CT and MRI oncological imaging that addresses the benefits and challenges of the resultant opportunities with examples. Major challenges remain, such as how best to integrate AI developments into clinical radiology practice, the vigorous assessment of quantitative CT and MR imaging data accuracy, and reliability for clinical utility and research integrity in oncology. Such challenges necessitate an evaluation of the robustness of imaging biomarkers to be included in AI developments, a culture of data sharing, and the cooperation of knowledgeable academics with vendor scientists and companies operating in radiology and oncology fields. Herein, we will illustrate a few challenges and solutions of these efforts using novel methods for synthesizing different contrast modality images, auto-segmentation, and image reconstruction with examples from lung CT as well as abdome, pelvis, and head and neck MRI. The imaging community must embrace the need for quantitative CT and MRI metrics beyond lesion size measurement. AI methods for the extraction and longitudinal tracking of imaging metrics from registered lesions and understanding the tumor environment will be invaluable for interpreting disease status and treatment efficacy. This is an exciting time to work together to move the imaging field forward with narrow AI-specific tasks. New AI developments using CT and MRI datasets will be used to improve the personalized management of cancer patients.

11.
Biomolecules ; 13(3)2023 03 13.
Article in English | MEDLINE | ID: mdl-36979457

ABSTRACT

Cell-penetrating peptides (CPPs) have great potential to deliver bioactive agents into cells. Although there have been many recent advances in CPP-related research, it is still important to develop more efficient CPPs. The development of CPPs by in silico methods is a very useful addition to experimental methods, but in many cases it can lead to a large number of false-positive results. In this study, we developed a deep-learning-based CPP prediction method, AiCPP, to develop novel CPPs. AiCPP uses a large number of peptide sequences derived from human-reference proteins as a negative set to reduce false-positive predictions and adopts a method to learn small-length peptide sequence motifs that may have CPP tendencies. Using AiCPP, we found that short peptide sequences derived from amyloid precursor proteins are efficient new CPPs, and experimentally confirmed that these CPP sequences can be further optimized.


Subject(s)
Cell-Penetrating Peptides , Deep Learning , Humans , Cell-Penetrating Peptides/metabolism , Amino Acid Sequence , Protein Transport
12.
Nanotechnology ; 34(18)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36724507

ABSTRACT

In this work, the endurance characteristics of Al-doped HfO2(HAO)-based metal-ferroelectric-metal (MFM) capacitors (which were annealed at 1000 °C) with various doping concentrations were investigated. The doping concentration was optimized for the high annealing temperature (1000 °C) process. To investigate the impact of cycling pulses on the endurance characteristics of HAO-based MFM capacitor, the rise/fall time (tr/f) and hold time (th) for the cycling pulses were varied. Moreover, by adopting the recoverable fatigue process, the endurance characteristics under repetitive wake-up/fatigue processes were studied. The HAO capacitors achieved the remnant polarization (2Pr) of 23.767µC cm-2at pristine state under the high annealing temperature. Furthermore, it was demonstrated that the endurance characteristics (∼108cycles) of the HAO capacitors were comparable to them of other HfO2-based ferroelectric capacitors. Lastly but not least, it turned out that the amount of oxygen and oxygen vacancies in the HAO thin film was dependent of doping concentrations for the film. The impact of oxygen and oxygen vacancies was quantitatively analyzed, in detail, with TEM, XPS and GIXRD analysis.

13.
PLoS One ; 18(2): e0281640, 2023.
Article in English | MEDLINE | ID: mdl-36795696

ABSTRACT

BACKGROUND: Glycolytic reprogramming is a key feature of chronic inflammatory disease. Extracellular matrix (ECM) produced by myofibroblasts plays an important role in tissue remodeling of nasal mucosa in chronic rhinosinusitis (CRS). This study aimed to determine whether glycolytic reprogramming contributes to myofibroblast differentiation and ECM production in nasal fibroblasts. METHODS: Primary nasal fibroblasts were isolated from the nasal mucosa of patients with CRS. Glycolytic reprogramming was assessed by measuring the extracellular acidification and oxygen consumption rates in nasal fibroblast, with and without transforming growth factor beta 1 (TGF-ß1) treatment. Expression of glycolytic enzymes and ECM components was measured by real-time polymerase chain reaction, western blotting, and immunocytochemical staining. Gene set enrichment analysis was performed using whole RNA-sequencing data of nasal mucosa of healthy donors and patients with CRS. RESULT: Glycolysis of nasal fibroblasts stimulated with TGF-B1 was upregulated along with glycolytic enzymes. Hypoxia-inducing factor (HIF)-1α was a high-level regulator of glycolysis, and increased HIF-1α expression promoted glycolysis of nasal fibroblasts, and inhibition of HIF-1α down-regulated myofibroblasts differentiation and ECM production. CONCLUSION: This study suggests that inhibition of the glycolytic enzyme and HIF-1α in nasal fibroblasts regulates myofibroblast differentiation and ECM generation associated with nasal mucosa remodeling.


Subject(s)
Myofibroblasts , Nasal Polyps , Humans , Cells, Cultured , Myofibroblasts/metabolism , Fibroblasts/metabolism , Extracellular Matrix/metabolism , Transforming Growth Factor beta1/metabolism , Glycolysis/physiology , Nasal Polyps/metabolism
14.
Antioxidants (Basel) ; 12(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36671057

ABSTRACT

Oxidative stress results from an imbalance between the production of reactive oxygen species and the body's antioxidant defense system. It plays an important role in the regulation of the immune response and can be a pathogenic factor in various diseases. Chronic rhinosinusitis (CRS) is a complex and heterogeneous disease with various phenotypes and endotypes. Recently, an increasing number of studies have proposed that oxidative stress (caused by both environmental and intrinsic stimuli) plays an important role in the pathogenesis and persistence of CRS. This has attracted the attention of several researchers. The relationship between the presence of reactive oxygen species composed of free radicals and nasal polyp pathology is a key topic receiving attention. This article reviews the role of oxidative stress in respiratory diseases, particularly CRS, and introduces potential therapeutic antioxidants that may offer targeted treatment for CRS.

15.
Acta Radiol ; 64(3): 1007-1017, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35979586

ABSTRACT

BACKGROUND: The demand for homogeneous and higher vascular contrast enhancement is critical to provide an appropriate interpretation of abnormal vascular findings in coronary computed tomography angiography (CTA). PURPOSE: To evaluate the effect of various contrast media concentrations (Iohexol-370, Iohexol-300, Iohexol-240) and image reconstructions (filtered back projection [FBP], hybrid iterative reconstruction [IR], and deep learning reconstruction [DLR]) on coronary CTA. MATERIAL AND METHODS: A total of 63 patients referred for coronary CTA between July and October 2021 were enrolled in this prospective study, and they randomly received one of three contrast media. CTA images were reconstructed with FBP, hybrid IR, and DLR. The CT attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated for all three images. The images were subjectively evaluated by two radiologists in terms of overall image quality, artifacts, image noise, and vessel wall delineation on a 5-point Likert scale. RESULTS: The application of DLR resulted in significantly lower image noise; higher CT attenuation, SNR, and CNR; and better subjective analysis among the three different concentrations of contrast media groups (P < 0.001). There was no significant difference in the CT attenuation of the left ventricle (P = 0.089) and coronary arteries (P = 0.072) between hybrid IR at Iohexol-300 and DLR at Iohexol-240. Furthermore, application of DLR to the Iohexol-240 significantly improved SNR and CNR; it achieved higher subjective scores compared with hybrid IR at Iohexol-300 (P < 0.001). CONCLUSION: We suggest that using DLR with Iohexol-240 contrast media is preferable to hybrid IR with Iohexol-300 contrast media in coronary CTA.


Subject(s)
Computed Tomography Angiography , Deep Learning , Humans , Algorithms , Computed Tomography Angiography/methods , Contrast Media , Coronary Angiography/methods , Coronary Vessels , Iohexol , Prospective Studies , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
16.
Mol Med ; 28(1): 164, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585612

ABSTRACT

BACKGROUND: High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays a central role in innate immunity. HMGB1 acts as a late mediator of inflammation when actively secreted in response to inflammatory stimuli. Several post-translational modifications (PTMs), including acetylation, phosphorylation, and oxidation, are involved in HMGB1 secretion. However, the E3 ligases of HMGB1 and the mechanism by which DUBs regulate HMGB1 deubiquitination are not well known. METHODS: LC-MS/MS, proximity ligation assay, immunoprecipitation were used to identify ubiquitin-specific protease 13 (USP13) as a binding partner of HMGB1 and to investigate ubiquitination of HMGB1. USP13 domain mutant was constructed for domain study and Spautin-1 was treated for inhibition of USP13. Confocal microscopy image showed localization of HMGB1 by USP13 overexpression. The data were analyzed using one-way analysis of variance with Tukey's honestly significant difference post-hoc test for multiple comparisons or a two-tailed Student's t-test. RESULTS: We identified ubiquitin-specific protease 13 (USP13) as a novel binding partner of HMGB1 and demonstrated that USP13 plays a role in stabilizing HMGB1 from ubiquitin-mediated degradation. USP13 overexpression increased nucleocytoplasmic translocation of HMGB1 and promoted its secretion, which was inhibited by treatment with Spautin-1, a selective inhibitor of USP13. CONCLUSION: Taken together, we suggest that USP13 is a novel deubiquitinase of HMGB1 that regulates the stability and secretion of HMGB1.


Subject(s)
Endopeptidases , HMGB1 Protein , Humans , Endopeptidases/metabolism , HMGB1 Protein/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Ubiquitin-Specific Proteases/genetics
17.
Korean J Radiol ; 23(11): 1044-1054, 2022 11.
Article in English | MEDLINE | ID: mdl-36196766

ABSTRACT

OBJECTIVE: This study aimed to investigate whether a deep learning reconstruction (DLR) method improves the image quality, stent evaluation, and visibility of the valve apparatus in coronary computed tomography angiography (CCTA) when compared with filtered back projection (FBP) and hybrid iterative reconstruction (IR) methods. MATERIALS AND METHODS: CCTA images of 51 patients (mean age ± standard deviation [SD], 63.9 ± 9.8 years, 36 male) who underwent examination at a single institution were reconstructed using DLR, FBP, and hybrid IR methods and reviewed. CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and stent evaluation, including 10%-90% edge rise slope (ERS) and 10%-90% edge rise distance (ERD), were measured. Quantitative data are summarized as the mean ± SD. The subjective visual scores (1 for worst -5 for best) of the images were obtained for the following: overall image quality, image noise, and appearance of stent, vessel, and aortic and tricuspid valve apparatus (annulus, leaflets, papillary muscles, and chordae tendineae). These parameters were compared between the DLR, FBP, and hybrid IR methods. RESULTS: DLR provided higher Hounsfield unit (HU) values in the aorta and similar attenuation in the fat and muscle compared with FBP and hybrid IR. The image noise in HU was significantly lower in DLR (12.6 ± 2.2) than in hybrid IR (24.2 ± 3.0) and FBP (54.2 ± 9.5) (p < 0.001). The SNR and CNR were significantly higher in the DLR group than in the FBP and hybrid IR groups (p < 0.001). In the coronary stent, the mean value of ERS was significantly higher in DLR (1260.4 ± 242.5 HU/mm) than that of FBP (801.9 ± 170.7 HU/mm) and hybrid IR (641.9 ± 112.0 HU/mm). The mean value of ERD was measured as 0.8 ± 0.1 mm for DLR while it was 1.1 ± 0.2 mm for FBP and 1.1 ± 0.2 mm for hybrid IR. The subjective visual scores were higher in the DLR than in the images reconstructed with FBP and hybrid IR. CONCLUSION: DLR reconstruction provided better images than FBP and hybrid IR reconstruction.


Subject(s)
Computed Tomography Angiography , Deep Learning , Humans , Male , Computed Tomography Angiography/methods , Coronary Vessels/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Stents , Algorithms , Radiation Dosage , Coronary Angiography/methods
18.
Sensors (Basel) ; 22(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35684705

ABSTRACT

The endurance characteristic of Zr-doped HfO2 (HZO)-based metal-ferroelectric-metal (MFM) capacitors fabricated under various deposition/annealing temperatures in the atomic layer deposition (ALD) process was investigated. The chamber temperature in the ALD process was set to 120 °C, 200 °C, or 250 °C, and the annealing temperature was set to 400 °C, 500 °C, 600 °C, or 700 °C. For the given annealing temperature of 700 °C, the remnant polarization (2Pr) was 17.21 µC/cm2, 26.37 µC/cm2, and 31.8 µC/cm2 at the chamber temperatures of 120 °C, 200 °C, and 250 °C, respectively. For the given/identical annealing temperature, the largest remnant polarization (Pr) was achieved when using the chamber temperature of 250 °C. At a higher annealing temperature, the grain size in the HZO layer becomes smaller, and thereby, it enables to boost up Pr. It was observed that the endurance characteristics for the capacitors fabricated under various annealing/chamber temperatures were quite different. The different endurance characteristics are due to the oxygen and oxygen vacancies in ferroelectric films, which affects the wakeup/fatigue behaviors. However, in common, all the capacitors showed no breakdown for an externally applied pulse (up to 108 cycles of the pulse).

19.
Front Immunol ; 13: 777928, 2022.
Article in English | MEDLINE | ID: mdl-35309360

ABSTRACT

Background: Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis (CRS) and is a refractory or intractable disease. However, a reliable clinical marker or an effective treatment strategy has not yet been established. ECRS is accompanied by excessive eosinophil infiltration and Th2 inflammatory response, which is closely related to tissue remodeling in the upper airways. Objectives: We sought to investigate the effect of eosinophils on tissue remodeling in ECRS. The purpose of this study was to identify the effects of eosinophils on the expression of pro-inflammatory mediators and extracellular matrix (ECM) in nasal fibroblasts and the key mediators that stimulate them. Methods: Butyric acid was used to differentiate EOL-1 cells into eosinophils. We co-cultured differentiated EOL-1 cells and fibroblasts to measure the expression of pro-inflammatory mediators and ECM in fibroblasts. Among the cytokines secreted from the differentiated EOL-1 cells, factors that induced tissue remodeling of fibroblasts were identified. Results: Treatment with butyric acid (BA) differentiated EOL-1 cells into eosinophils. Differentiated EOL-1 cells induced fibroblasts to produce pro-inflammatory mediators, IL-6 and IL-8, and tissue remodeling factor, VEGF. It also induced myofibroblast differentiation and overexpression of ECM components. Differentiated EOL-1 cells overexpressed osteopontin (OPN), and recombinant OPN increased the expression of IL-6, IL-8, VEGF, and ECM components in nasal fibroblast. OPN was overexpressed in the nasal tissue of patients with ECRS and was associated with the severity of CRS. Conclusions: Eosinophil-derived OPN stimulated nasal fibroblasts and contributed to inflammation and tissue remodeling in ECRS. Moreover, the expression level of OPN was proportional to the severity of ECRS. Therefore, OPN regulation is a potential treatment for ECRS.


Subject(s)
Nasal Polyps , Sinusitis , Butyric Acid/pharmacology , Chronic Disease , Eosinophils/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Nasal Polyps/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Sinusitis/metabolism , Vascular Endothelial Growth Factor A/metabolism
20.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35328422

ABSTRACT

Chronic rhinosinusitis (CRS) pathogenesis is closely related to tissue remodeling, including epithelial-mesenchymal transition (EMT). Epigenetic mechanisms play key roles in EMT. DNA methylation, mediated by DNA methyltransferases (DNMTs), is an epigenetic marker that is critical to EMT. The goal of this study was to determine whether DNMTs were involved in TGF-ß1-induced EMT and elucidate the underlying mechanisms in nasal epithelial cells and air-liquid interface cultures. Global DNA methylation and DNMT activity were quantified. DNMT expression was measured using real-time PCR (qRT-PCR) in human CRS tissues. mRNA and protein levels of DNMTs, E-cadherin, vimentin, α-SMA, and fibronectin were determined using RT-PCR and Western blotting, respectively. DNMT1, DNMT3A, and DNMT3B gene expression were knocked down using siRNA transfection. MAPK phosphorylation and EMT-related transcription factor levels were determined using Western blotting. Signaling pathways were analyzed using specific inhibitors of MAPK. We demonstrated these data in primary nasal epithelial cells and air-liquid interface cultures. Global DNA methylation, DNMT activity, and DNMT expression increased in CRS tissues. DNMT expression was positively correlated with Lund-McKay CT scores. TGF-ß1 dose-dependently induced DNMT expression. Further, 5-Aza inhibited TGF-ß1-induced DNMT, Snail, and Slug expression related to EMT, as well as p38 and JNK phosphorylation in A549 cells and TGF-ß1-induced DNMT expression and EMT in primary nasal epithelial cells and air-liquid interface cultures. TGF-ß1-induced DNMT expression leads to DNA methylation and EMT via p38, JNK, Snail, and Slug signaling pathways. Inhibition of DNMT suppressed the EMT process and therefore is potentially a CRS therapeutic strategy.


Subject(s)
Epithelial-Mesenchymal Transition , Sinusitis , A549 Cells , Cadherins/metabolism , DNA Methylation , Epithelial Cells/metabolism , Humans , Sinusitis/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...