Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826322

ABSTRACT

Rationale: TRPV4 channels are critical regulators of blood vascular function and have been shown to be dysregulated in many disease conditions in association with inflammation and tissue fibrosis. These are key features in the pathophysiology of lymphatic system diseases, including lymphedema and lipedema; however, the role of TRPV4 channels in the lymphatic system remains largely unexplored. TRPV4 channels are calcium permeable, non-selective cation channels that are activated by diverse stimuli, including shear stress, stretch, temperature, and cell metabolites, which may regulate lymphatic contractile function. Objective: To characterize the expression of TRPV4 channels in collecting lymphatic vessels and to determine the extent to which these channels regulate the contractile function of lymphatics. Methods and Results: Pressure myography on intact, isolated, and cannulated lymphatic vessels showed that pharmacological activation of TRPV4 channels with GSK1016790A (GSK101) led to contractile dysregulation. The response to GSK101 was multiphasic and included, 1) initial robust constriction that was sustained for ≥1 minute and in some instances remained for ≥4 minutes; and 2) subsequent vasodilation and partial or complete inhibition of lymphatic contractions associated with release of nitric oxide. The functional response to activation of TRPV4 channels displayed differences across lymphatics from four anatomical regions, but these differences were consistent across different species (mouse, rat, and non-human primate). Importantly, similar responses were observed following activation of TRPV4 channels in arterioles. The initial and sustained constriction was prevented with the COX inhibitor, indomethacin. We generated a controlled and spatially defined single-cell RNA sequencing (scRNAseq) dataset from intact and microdissected collecting lymphatic vessels. Our data uncovered a subset of macrophages displaying the highest expression of Trpv4 compared to other cell types within and surrounding the lymphatic vessel wall. These macrophages displayed a transcriptomic profile consistent with that of tissue-resident macrophages (TRMs), including differential expression of Lyve1 , Cd163 , Folr2 , Mrc1 , Ccl8 , Apoe , Cd209f , Cd209d , and Cd209g ; and at least half of these macrophages also expressed Timd4. This subset of macrophages also highly expressed Txa2s , which encodes the thromboxane A2 (TXA2) synthase. Inhibition of TXA2 receptors (TXA2Rs) prevented TRPV4-mediated contractile dysregulation. TXA2R activation on LMCs caused an increase in mobilization of calcium from intracellular stores through Ip3 receptors which promoted store operated calcium entry and vasoconstriction. Conclusions: Clinical studies have linked cancer-related lymphedema with an increased infiltration of macrophages. While these macrophages have known anti-inflammatory and pro-lymphangiogenic roles, as well as promote tissue repair, our results point to detrimental effects to the pumping capacity of collecting lymphatic vessels mediated by activation of TRPV4 channels in macrophages. Pharmacological targeting of TRPV4 channels in LYVE1-expressing macrophages or pharmacological targeting of TXA2Rs may offer novel therapeutic strategies to improve lymphatic pumping function and lymph transport in lymphedema.

2.
J Invest Dermatol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879154

ABSTRACT

Breast cancer-related lymphedema (BCRL) is characterized by skin changes, swelling, fibrosis, and recurrent skin infections. Clinical studies have suggested that lymphedema results in skin barrier defects; however, the underlying cellular mechanisms and the effects of bacterial contamination on skin barrier function remain unknown. In matched biopsies from patients with unilateral BCRL, we observed decreased expression of filaggrin and the tight junction protein zona occludens-1 (ZO-1) in skin affected by moderate lymphedema, or by subclinical lymphedema in which dermal backflow of lymph was identified by indocyanine green lymphography, relative to controls (areas without backflow and from the unaffected arm). In vitro stimulation of keratinocytes with lymph fluid obtained from patients undergoing lymphedema surgery led to the same changes, as well as increased expression of keratin 14, a marker of immature keratinocytes. Finally, using mouse models of lymphedema, we showed that like the clinical scenario, the expression of skin barrier proteins was decreased relative to normal skin and that colonization with S. epidermidis bacteria amplified this effect, as well as lymphedema severity. Taken together, our findings suggest that lymphatic fluid stasis contributes to skin barrier dysfunction in lymphedema.

3.
Curr Breast Cancer Rep ; : 1-9, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37359311

ABSTRACT

Purpose of Review: This review aims to summarize the current knowledge regarding the pharmacological interventions studied in both experimental and clinical trials for secondary lymphedema. Recent Findings: Lymphedema is a progressive disease that results in tissue swelling, pain, and functional disability. The most common cause of secondary lymphedema in developed countries is an iatrogenic injury to the lymphatic system during cancer treatment. Despite its high incidence and severe sequelae, lymphedema is usually treated with palliative options such as compression and physical therapy. However, recent studies on the pathophysiology of lymphedema have explored pharmacological treatments in preclinical and early phase clinical trials. Summary: Many potential treatment options for lymphedema have been explored throughout the past two decades including systemic agents and topical approaches to decrease the potential toxicity of systemic treatment. Treatment strategies including lymphangiogenic factors, anti-inflammatory agents, and anti-fibrotic therapies may be used independently or in conjunction with surgical approaches.

4.
PLoS One ; 18(5): e0283609, 2023.
Article in English | MEDLINE | ID: mdl-37196005

ABSTRACT

Lymphedema is a chronic condition that commonly occur from lymphatic injury following surgical resection of solid malignancies. While many studies have centered on the molecular and immune pathways that perpetuate lymphatic dysfunction, the role of the skin microbiome in lymphedema development remains unclear. In this study, skin swabs collected from normal and lymphedema forearms of 30 patients with unilateral upper extremity lymphedema were analyzed by 16S ribosomal RNA sequencing. Statistical models for microbiome data were utilized to correlate clinical variables with microbial profiles. Overall, 872 bacterial taxa were identified. There were no significant differences in microbial alpha diversity of the colonizing bacteria between normal and lymphedema skin samples (p = 0.25). Notably, for patients without a history of infection, a one-fold change in relative limb volume was significantly associated with a 0.58-unit increase in Bray-Curtis microbial distance between paired limbs (95%CI = 0.11,1.05, p = 0.02). Additionally, several genera, including Propionibacterium and Streptococcus, demonstrated high variability between paired samples. In summary, we demonstrate high compositional heterogeneity in the skin microbiome in upper extremity secondary lymphedema, supporting future studies into the role of host-microbe interactions on lymphedema pathophysiology.


Subject(s)
Lymphatic Vessels , Lymphedema , Neoplasms , Humans , Upper Extremity , Lymphatic Vessels/pathology , Skin/pathology , Neoplasms/pathology , Lymphedema/pathology
5.
Transl Res ; 257: 43-53, 2023 07.
Article in English | MEDLINE | ID: mdl-36736951

ABSTRACT

Transforming growth factor-beta 1 (TGF-ß1)-mediated tissue fibrosis is an important regulator of lymphatic dysfunction in secondary lymphedema. However, TGF-ß1 targeting can cause toxicity and autoimmune complications, limiting clinical utility. Angiotensin II (Ang II) modulates intracellular TGF-ß1 signaling, and inhibition of Ang II production using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, has antifibrotic efficacy in some pathological settings. Therefore, we analyzed the expression of ACE and Ang II in clinical lymphedema biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL) and mouse models, and found that cutaneous ACE expression is increased in lymphedematous tissues. Furthermore, topical captopril decreases fibrosis, activation of intracellular TGF-ß1 signaling pathways, inflammation, and swelling in mouse models of lymphedema. Captopril treatment also improves lymphatic function and immune cell trafficking by increasing collecting lymphatic pumping. Our results show that the renin-angiotensin system in the skin plays an important role in the regulation of fibrosis in lymphedema, and inhibition of this signaling pathway may hold merit for treating lymphedema.


Subject(s)
Captopril , Lymphedema , Mice , Animals , Captopril/pharmacology , Captopril/therapeutic use , Transforming Growth Factor beta1/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Fibrosis , Angiotensin II , Lymphedema/drug therapy , Lymphedema/etiology
6.
bioRxiv ; 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36711669

ABSTRACT

Epidermal changes are histological hallmarks of secondary lymphedema, but it is unknown if keratinocytes contribute to its pathophysiology. Using clinical lymphedema specimens and mouse models, we show that keratinocytes play a primary role in lymphedema development by producing T-helper 2 (Th2) -inducing cytokines. Specifically, we find that keratinocyte proliferation and expression of protease-activated receptor 2 (PAR2) are early responses following lymphatic injury and regulate the expression of Th2-inducing cytokines, migration of Langerhans cells, and skin infiltration of Th2-differentiated T cells. Furthermore, inhibition of PAR2 activation with a small molecule inhibitor or the proliferation inhibitor teriflunomide (TF) prevents activation of keratinocytes stimulated with lymphedema fluid. Finally, topical TF is highly effective for decreasing swelling, fibrosis, and inflammation in a preclinical mouse model. Our findings suggest that lymphedema is a chronic inflammatory skin disease, and topically targeting keratinocyte activation may be a clinically effective therapy for this condition.

7.
Cells ; 13(1)2023 12 28.
Article in English | MEDLINE | ID: mdl-38201272

ABSTRACT

Vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), a receptor tyrosine kinase encoded by the FLT4 gene, plays a significant role in the morphogenesis and maintenance of lymphatic vessels. Under both normal and pathologic conditions, VEGF-C and VEGF-D bind VEGFR3 on the surface of lymphatic endothelial cells (LECs) and induce lymphatic proliferation, migration, and survival by activating intracellular PI3K-Akt and MAPK-ERK signaling pathways. Impaired lymphatic function and VEGFR3 signaling has been linked with a myriad of commonly encountered clinical conditions. This review provides a brief overview of intracellular VEGFR3 signaling in LECs and explores examples of dysregulated VEGFR3 signaling in various disease states, including (1) lymphedema, (2) tumor growth and metastasis, (3) obesity and metabolic syndrome, (4) organ transplant rejection, and (5) autoimmune disorders. A more complete understanding of the molecular mechanisms underlying the lymphatic pathology of each disease will allow for the development of novel strategies to treat these chronic and often debilitating illnesses.


Subject(s)
Endothelial Cells , Phosphatidylinositol 3-Kinases , Vascular Endothelial Growth Factor A , Endothelium, Lymphatic , Signal Transduction
8.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362253

ABSTRACT

Steady-state lymphatic endothelial cells (LECs) can induce peripheral tolerance by presenting endogenous antigens on MHC class I (MHC-I) molecules. Recent evidence suggests that lymph node LECs can cross-present tumor antigens on MHC-I to suppress tumor-specific CD8+ T cells. Whether LECs can act as immunosuppressive cells in an MHC-II dependent manner in the local tumor microenvironment (TME) is not well characterized. Using murine heterotopic and spontaneous tumor models, we show that LECs in the TME increase MHC-II expression in the context of increased co-inhibitory signals. We provide evidence that tumor lymphatics in human melanoma and breast cancer also upregulate MHC-II compared to normal tissue lymphatics. In transgenic mice that lack LEC-specific MHC-II expression, heterotopic tumor growth is attenuated, which is associated with increased numbers of tumor-specific CD8+ and effector CD4+ T cells, as well as decreased numbers of T regulatory CD4+ cells in the TME. Mechanistically, we show that murine and human dermal LECs can take up tumor antigens in vitro. Antigen-loaded LECs in vitro can induce antigen-specific proliferation of CD8+ T cells but not CD4+ T cells; however, these proliferated CD8+ T cells have reduced effector function in the presence of antigen-loaded LECs. Taken together, our study suggests LECs can act as immunosuppressive cells in the TME in an MHC-II dependent manner. Whether this is a result of direct tumor antigen presentation on MHC-II requires additional investigation.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Melanoma , Mice , Humans , Animals , Endothelial Cells/metabolism , Antigen Presentation , CD8-Positive T-Lymphocytes , Antigens, Neoplasm/metabolism , Mice, Transgenic , Melanoma/metabolism , Histocompatibility Antigens Class II/metabolism , CD4-Positive T-Lymphocytes , Tumor Microenvironment
9.
Front Aging ; 3: 864860, 2022.
Article in English | MEDLINE | ID: mdl-35821848

ABSTRACT

Lymphatic structure and function play a critical role in fluid transport, antigen delivery, and immune homeostasis. A dysfunctional lymphatic system is associated with chronic low-grade inflammation of peripheral tissues, poor immune responses, and recurrent infections, which are also hallmarks of aging pathology. Previous studies have shown that aging impairs lymphatic structure and function in a variety of organ systems, including the intestines and central nervous system. However, previous studies are mostly limited to qualitative analysis of lymphatic structural changes and quantification of intestinal collecting vessel contractile function. It is not clear whether decreased lymphatic function contributes to pathological conditions related to aging, nor how it affects the skin immune microenvironment. Further, the effects of aging on skin initial and collecting lymphatic vessels, dendritic cell (DC) migration, cutaneous lymphatic pumping, and VEGFR-3 signaling in lymphatic endothelial cells (LECs) have not been quantitatively analyzed. Here, using fluorescent immunohistochemistry and flow cytometry, we confirm that aging decreases skin initial and collecting lymphatic vessel density. Indocyanine green (ICG) lymphangiography and DC migration assays confirm that aging decreases both fluid pumping and cell migration via lymphatic vessels. At the cellular level, aging causes decreased VEGFR-3 signaling, leading to increased LEC apoptosis and senescence. Finally, we determined that aging causes decreased lymphatic production of chemokines and alters LEC expression of junctional and adhesion molecules. This in turn leads to increased peri-lymphatic inflammation and nitrosative stress that might contribute to aging pathology in a feed-forward manner. Taken together, our study, in addition to quantitatively corroborating previous findings, suggests diverse mechanisms that contribute to lymphatic dysfunction in aging that in turn exacerbate the pathology of aging in a feed-forward manner.

10.
Clin Transl Med ; 12(6): e758, 2022 06.
Article in English | MEDLINE | ID: mdl-35652284

ABSTRACT

BACKGROUND: Secondary lymphedema is a common complication of cancer treatment, and previous studies have shown that the expression of transforming growth factor-beta 1 (TGF-ß1), a pro-fibrotic and anti-lymphangiogenic growth factor, is increased in this disease. Inhibition of TGF-ß1 decreases the severity of the disease in mouse models; however, the mechanisms that regulate this improvement remain unknown. METHODS: Expression of TGF-ß1 and extracellular matrix molecules (ECM) was assessed in biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL). The effects of TGF-ß1 inhibition using neutralizing antibodies or a topical formulation of pirfenidone (PFD) were analyzed in mouse models of lymphedema. We also assessed the direct effects of TGF-ß1 on lymphatic endothelial cells (LECs) using transgenic mice that expressed a dominant-negative TGF-ß receptor selectively on LECs (LECDN-RII ). RESULTS: The expression of TGF-ß1 and ECM molecules is significantly increased in BCRL skin biopsies. Inhibition of TGF-ß1 in mouse models of lymphedema using neutralizing antibodies or with topical PFD decreased ECM deposition, increased the formation of collateral lymphatics, and inhibited infiltration of T cells. In vitro studies showed that TGF-ß1 in lymphedematous tissues increases fibroblast, lymphatic endothelial cell (LEC), and lymphatic smooth muscle cell stiffness. Knockdown of TGF-ß1 responsiveness in LECDN-RII resulted in increased lymphangiogenesis and collateral lymphatic formation; however, ECM deposition and fibrosis persisted, and the severity of lymphedema was indistinguishable from controls. CONCLUSIONS: Our results show that TGF-ß1 is an essential regulator of ECM deposition in secondary lymphedema and that inhibition of this response is a promising means of treating lymphedema.


Subject(s)
Lymphedema , Transforming Growth Factor beta1 , Animals , Antibodies, Neutralizing/pharmacology , Chronic Disease , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fibrosis , Humans , Inflammation/pathology , Lymphedema/genetics , Lymphedema/metabolism , Lymphedema/pathology , Mice , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
11.
Front Pharmacol ; 13: 828513, 2022.
Article in English | MEDLINE | ID: mdl-35145417

ABSTRACT

Lymphedema is a chronic disease that results in swelling and decreased function due to abnormal lymphatic fluid clearance and chronic inflammation. In Western countries, lymphedema most commonly develops following an iatrogenic injury to the lymphatic system during cancer treatment. It is estimated that as many as 10 million patients suffer from lymphedema in the United States alone. Current treatments for lymphedema are palliative in nature, relying on compression garments and physical therapy to decrease interstitial fluid accumulation in the affected extremity. However, recent discoveries have increased the hopes of therapeutic interventions that may promote lymphatic regeneration and function. The purpose of this review is to summarize current experimental pharmacological strategies in the treatment of lymphedema.

12.
Biology (Basel) ; 10(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34571811

ABSTRACT

Recent studies suggest that Th2 cells play a key role in the pathology of secondary lymphedema by elaborating cytokines such as IL4 and IL13. The aim of this study was to test the efficacy of QBX258, a monoclonal IL4/IL13 neutralizing antibody, in women with breast cancer-related lymphedema (BCRL). We enrolled nine women with unilateral stage I/II BCRL and treated them once monthly with intravenous infusions of QBX258 for 4 months. We measured limb volumes, bioimpedance, and skin tonometry, and analyzed the quality of life (QOL) using a validated lymphedema questionnaire (Upper Limb Lymphedema 27, ULL-27) before treatment, immediately after treatment, and 4 months following treatment withdrawal. We also obtained 5 mm skin biopsies from the normal and lymphedematous limbs before and after treatment. Treatment was well-tolerated; however, one patient with a history of cellulitis developed cellulitis during the trial and was excluded from further analysis. We found no differences in limb volumes or bioimpedance measurements after drug treatment. However, QBX258 treatment improved skin stiffness (p < 0.001) and improved QOL measurements (Physical p < 0.05, Social p = 0.01). These improvements returned to baseline after treatment withdrawal. Histologically, treatment decreased epidermal thickness, the number of proliferating keratinocytes, type III collagen deposition, infiltration of mast cells, and the expression of Th2-inducing cytokines in the lymphedematous skin. Our limited study suggests that immunotherapy against Th2 cytokines may improve skin changes and QOL of women with BCRL. This treatment appears to be less effective for decreasing limb volumes; however, additional studies are needed.

13.
Sci Signal ; 14(695)2021 08 10.
Article in English | MEDLINE | ID: mdl-34376570

ABSTRACT

Exogenous administration of lymphangiogenic growth factors is widely used to study changes in lymphatic function in pathophysiology. However, this approach can result in off-target effects, thereby generating conflicting data. To circumvent this issue, we modulated intracellular VEGF-C signaling by conditionally knocking out the lipid phosphatase PTEN using the Vegfr3 promoter to drive the expression of Cre-lox in lymphatic endothelial cells (LECs). PTEN is an intracellular brake that inhibits the downstream effects of the activation of VEGFR3 by VEGF-C. Activation of Cre-lox recombination in adult mice resulted in an expanded functional lymphatic network due to LEC proliferation that was independent of lymphangiogenic growth factor production. Furthermore, compared with lymphangiogenesis induced by VEGF-C injection, LECPTEN animals had mature, nonleaky lymphatics with intact cell-cell junctions and reduced local tissue inflammation. Last, compared with wild-type or VEGF-C-injected mice, LECPTEN animals had an improved capacity to resolve inflammatory responses. Our findings indicate that intracellular modulation of lymphangiogenesis is effective in inducing functional lymphatic networks and has no off-target inflammatory effects.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor Receptor-3 , Animals , Endothelial Cells/metabolism , Lymphangiogenesis , Mice , Signal Transduction , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
14.
Mol Metab ; 42: 101081, 2020 12.
Article in English | MEDLINE | ID: mdl-32941994

ABSTRACT

OBJECTIVE: Obesity results in lymphatic dysfunction, but the cellular mechanisms that mediate this effect remain largely unknown. Previous studies in obese mice have shown that inducible nitric oxide synthase-expressing (iNOS+) inflammatory cells accumulate around lymphatic vessels. In the current study, we therefore tested the hypothesis that increased expression of iNOS results in nitrosative stress and injury to the lymphatic endothelial cells (LECs). In addition, we tested the hypothesis that lymphatic injury, independent of obesity, can modulate glucose and lipid metabolism. METHODS: We compared the metabolic changes and lymphatic function of wild-type and iNOS knockout mice fed a normal chow or high-fat diet for 16 weeks. To corroborate our in vivo findings, we analyzed the effects of reactive nitrogen species on isolated LECs. Finally, using a genetically engineered mouse model that allows partial ablation of the lymphatic system, we studied the effects of acute lymphatic injury on glucose and lipid metabolism in lean mice. RESULTS: The mesenteric lymphatic vessels of obese wild-type animals were dilated, leaky, and surrounded by iNOS+ inflammatory cells with resulting increased accumulation of reactive nitrogen species when compared with lean wild-type or obese iNOS knockout animals. These changes in obese wild-type mice were associated with systemic glucose and lipid abnormalities, as well as decreased mesenteric LEC expression of lymphatic-specific genes, including vascular endothelial growth factor receptor 3 (VEGFR-3) and antioxidant genes as compared with lean wild-type or obese iNOS knockout animals. In vitro experiments demonstrated that isolated LECs were more sensitive to reactive nitrogen species than blood endothelial cells, and that this sensitivity was ameliorated by antioxidant therapies. Finally, using mice in which the lymphatics were specifically ablated using diphtheria toxin, we found that the interaction between metabolic abnormalities caused by obesity and lymphatic dysfunction is bidirectional. Targeted partial ablation of mesenteric lymphatic channels of lean mice resulted in increased accumulation of iNOS+ inflammatory cells and increased reactive nitrogen species. Lymphatic ablation also caused marked abnormalities in insulin sensitivity, serum glucose and insulin concentrations, expression of insulin-sensitive genes, lipid metabolism, and significantly increased systemic and mesenteric white adipose tissue (M-WAT) inflammatory responses. CONCLUSIONS: Our studies suggest that increased iNOS production in obese animals plays a key role in regulating lymphatic injury by increasing nitrosative stress. In addition, our studies suggest that obesity-induced lymphatic injury may amplify metabolic abnormalities by increasing systemic and local inflammatory responses and regulating insulin sensitivity. These findings suggest that manipulation of the lymphatic system may represent a novel means of treating metabolic abnormalities associated with obesity.


Subject(s)
Endothelial Cells/physiology , Nitric Oxide Synthase Type II/metabolism , Nitrosative Stress/immunology , Adipose Tissue/metabolism , Animals , Diet, High-Fat , Endothelial Cells/metabolism , Glucose , Inflammation/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Lipid Metabolism/physiology , Lymph Nodes/metabolism , Lymph Nodes/physiology , Lymphatic Vessels/injuries , Lymphatic Vessels/metabolism , Lymphatic Vessels/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Nitric Oxide Synthase Type II/genetics , Nitrosative Stress/physiology , Obesity/metabolism , Obesity/physiopathology
15.
Front Physiol ; 11: 459, 2020.
Article in English | MEDLINE | ID: mdl-32499718

ABSTRACT

The lymphatic system has many functions, including macromolecules transport, fat absorption, regulation and modulation of adaptive immune responses, clearance of inflammatory cytokines, and cholesterol metabolism. Thus, it is evident that lymphatic function can play a key role in the regulation of a wide array of biologic phenomenon, and that physiologic changes that alter lymphatic function may have profound pathologic effects. Recent studies have shown that obesity can markedly impair lymphatic function. Obesity-induced pathologic changes in the lymphatic system result, at least in part, from the accumulation of inflammatory cells around lymphatic vessel leading to impaired lymphatic collecting vessel pumping capacity, leaky initial and collecting lymphatics, alterations in lymphatic endothelial cell (LEC) gene expression, and degradation of junctional proteins. These changes are important since impaired lymphatic function in obesity may contribute to the pathology of obesity in other organ systems in a feed-forward manner by increasing low-grade tissue inflammation and the accumulation of inflammatory cytokines. More importantly, recent studies have suggested that interventions that inhibit inflammatory responses, either pharmacologically or by lifestyle modifications such as aerobic exercise and weight loss, improve lymphatic function and metabolic parameters in obese mice. The purpose of this review is to summarize the pathologic effects of obesity on the lymphatic system, the cellular mechanisms that regulate these responses, the effects of impaired lymphatic function on metabolic syndrome in obesity, and the interventions that may improve lymphatic function in obesity.

16.
Cancer Immunol Res ; 7(8): 1345-1358, 2019 08.
Article in English | MEDLINE | ID: mdl-31186247

ABSTRACT

Proliferation of aberrant, dysfunctional lymphatic vessels around solid tumors is a common histologic finding. Studies have shown that abnormalities in lymphatic function result in accumulation of inflammatory cells with an immunosuppressive profile. We tested the hypothesis that dysfunctional lymphatic vessels surrounding solid tumors regulate changes in the tumor microenvironment and tumor-specific immune responses. Using subcutaneously implanted mouse melanoma and breast cancer tumors in a lymphatic endothelial cell-specific diphtheria toxin receptor transgenic mouse, we found that local ablation of lymphatic vessels increased peritumoral edema, as compared with controls. Comparative analysis of the peritumoral fluid demonstrated increases in the number of macrophages, CD4+ inflammatory cells, F4/80+/Gr-1+ (myeloid-derived suppressor cells), CD4+/Foxp3+ (Tregs) immunosuppressive cells, and expression of inflammatory cytokines such as TNFα, IFNγ, and IL1ß following lymphatic ablation. Tumors grown in lymphatic ablated mice exhibited reduced intratumoral accumulation of cytotoxic T cells and increased tumor PD-L1 expression, causing rapid tumor growth, compared with tumors grown in nonlymphatic-ablated mice. Our study suggests that lymphatic dysfunction plays a role in regulating tumor microenvironments and may be therapeutically targeted in combination with immunotherapy to prevent tumor growth and progression.


Subject(s)
Immunomodulation , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Animals , Biomarkers, Tumor , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Edema , Female , Inflammation , Lymphatic System , Lymphatic Vessels , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Melanoma, Experimental , Mice
17.
BMC Ophthalmol ; 16(1): 193, 2016 Nov 04.
Article in English | MEDLINE | ID: mdl-27809828

ABSTRACT

BACKGROUND: Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. METHODS: Mixed retinal donor cells (1 ~ 2 × 104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of specific cell types were used to analyze microglial attraction, CSPG induction and retinal cell differentiation. The positions of host retinal cells were traced according to their laminar location during disease progression to look for host cell rearrangements that might inhibit retinal integration of the transplanted cells. RESULTS: Transplanted retinal cells showed poor survival and attracted microglial cells, but CSPG was not greatly induced. Retinas of the LCA8 model hosts underwent significant cellular rearrangement, including rosette formation and apical displacement of inner retinal cells. CONCLUSIONS: Local disease environment, particularly host immune responses to injected cells and formation of a physical barrier caused by apical migration of host retinal cells upon disruption of outer limiting membrane, may impose two major barriers in LCAs cell transplantation therapy.


Subject(s)
Cell Transplantation/methods , Retina/cytology , Retinal Degeneration/surgery , Animals , Cell Survival , Disease Models, Animal , Mice , Mice, Transgenic , Retina/pathology , Retinal Degeneration/pathology
18.
Dev Biol ; 419(2): 336-347, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27616714

ABSTRACT

Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like ß-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Eye Proteins/physiology , Eye/embryology , Phosphoproteins/physiology , Retinal Pigment Epithelium/cytology , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Adhesion , Cell Cycle/physiology , Cell Cycle Proteins , Cell Division , Cell Lineage , Cell Polarity , Cell Transdifferentiation , Eye/metabolism , Eye Proteins/biosynthesis , Eye Proteins/genetics , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Homeodomain Proteins/analysis , Mice , Microscopy, Fluorescence , Neural Plate/cytology , Neural Plate/metabolism , Organelles/metabolism , Phosphoproteins/biosynthesis , Phosphoproteins/genetics , Retina/embryology , Retinal Pigment Epithelium/metabolism , Stem Cells/cytology , Transcription Factors/analysis , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...