Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Food Sci Biotechnol ; 33(7): 1707-1714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623436

ABSTRACT

Attempts to improve low absorption and rapid metabolic conversion of curcumin were made by developing curcumin-loaded bilayer nanoliposomes coated with chitosan and alginate for intestinal-specific drug delivery. A curcumin-loaded nano-liposome was prepared with optimized formulations with phosphatidylcholine, curcumin, chitosan, and alginate. The particle size of the optimized formulation was approximately 400 nm, and the encapsulation efficiency was more than 99%. In the in vitro release study, curcumin release from the curcumin-loaded nanoliposome with double layers of chitosan/alginate (CNL-CH/AL) was suppressed in the simulated gastric fluid (SGF, pH 1.2) and enhanced in the simulated intestinal fluid (SIF, pH 6.8). In the in vivo pharmacokinetic study in rats, the CNL-CH/AL-treated group showed a prolonged absorption pattern of curcumin and the area under the plasma concentration-time curve from 0 to 24 h (AUC0-24) was improved 109-fold compared to the control group treated with a curcumin solution without a nanocarrier.

2.
Nanotechnology ; 35(30)2024 May 07.
Article in English | MEDLINE | ID: mdl-38636473

ABSTRACT

Two-dimensional transition metal dichalcogenide (TMDC) semiconductors are emerging as strong contenders for electronic devices that can be used in highly radioactive environments such as outer space where conventional silicon-based devices exhibit nonideal characteristics for such applications. To address the radiation-induced interface effects of TMDC-based electronic devices, we studied high-energy proton beam irradiation effects on the electrical properties of field-effect transistors (FETs) made with tungsten diselenide (WSe2) channels and hexagonal boron-nitride (hBN)/SiO2gate dielectrics. The electrical characteristics of WSe2FETs were measured before and after the irradiation at various proton beam doses of 1013, 1014, and 1015cm-2. In particular, we demonstrated the dependence of proton irradiation-induced effects on hBN layer thickness in WSe2FETs. We observed that the hBN layer reduces the WSe2/dielectric interface effect which would shift the transfer curve of the FET toward the positive direction of the gate voltage. Also, this interface effect was significantly suppressed when a thicker hBN layer was used. This phenomenon can be explained by the fact that the physical separation of the WSe2channel and SiO2dielectric by the hBN interlayer prevents the interface effects originating from the irradiation-induced positive trapped charges in SiO2reaching the interface. This work will help improve our understanding of the interface effect of high-energy irradiation on TMDC-based nanoelectronic devices.

3.
Foods ; 12(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37835202

ABSTRACT

Marigold (Tagetes spp.) flower petals are the most vital sources of carotenoids, especially lutein esters, for the production of natural lutein to use for food, feed, and pharmaceutical industries. Several marigold cultivars are cultivated globally; however, their lutein ester composition and contents have not been widely investigated. Considering this, this study aimed to identify and quantify prominent carotenoid esters from the flower petals of ten marigold cultivars by liquid chromatography (LC)-diode-array detection (DAD)-mass spectrometry (MS). In addition, tocopherols, phytosterols, and fatty acids were analyzed by gas chromatography (GC)-flame ionization detection (FID) and GC-MS. Furthermore, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging abilities of lipophilic extracts were determined. The total carotenoid contents varied significantly (p < 0. 05, Tukey HSD) among cultivars, ranging from 25.62 (cv. Alaska)-2723.11 µg/g fresh weight (cv. Superboy Orange). Among the five major lutein-diesters, (all-E)-lutein-3-O-myristate-3'-O-palmitate and lutein dipalmitate were predominant. Among the studied cultivars, α-tocopherol was recorded, ranging from 167.91 (cv. Superboy Yellow) to 338.50 µg/g FW (cv. Taishan Orange). Among phytosterols, ß-sitosterol was the most prevalent phytosterol, ranging between 127.08 (cv. Superboy Yellow) and 191.99 µg/g FW (cv. Taishan Yellow). Palmitic acid (C16:0; 33.36-47.43%) was the most dominant among the fatty acids. In this study, the highest contents of lutein were recorded from cv. Superboy Orange; however, due to the substantially higher flower petal yield, the cv. Durango Red can produce the highest lutein yield of 94.45 kg/ha. These observations suggest that cv. Durango Red and cv. Superboy Orange are the ideal candidates for lutein fortification in foods and also for commercial lutein extraction.

4.
J Hand Ther ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37863730

ABSTRACT

STUDY DESIGN: This study was a scoping review. BACKGROUND: Continued advances in musculoskeletal sonography technology and access have increased the feasibility of point-of-care use to support day-to-day clinical care and decision-making. Sonography can help improve therapeutic outcomes in upper extremity (UE) rehabilitation by enabling clinicians to visualize underlying structures during treatment. PURPOSE OF THE STUDY: This study aimed to (1) evaluate the growth, range, extent, and composition of sonography literature supporting UE rehabilitation; (2) identify trends, gaps, and opportunities with regard to anatomic areas and diagnoses examined and ultrasound techniques used; and (3) evaluate potential research and practice utility. METHODS: Searches were completed in PubMed, CINAHL, SPORTDiscus, PsycINFO, and BIOSIS. We included data-driven articles using ultrasound imaging for upper extremity structures in rehabilitation-related conditions. Articles directly applicable to UE rehabilitation were labeled direct articles, while those requiring translation were labeled indirect articles. Articles were further categorized by ultrasound imaging purpose. Article content between the two groups was descriptively compared, and direct articles underwent an evaluation of evidence levels and narrative synthesis to explore potential clinical utility. RESULTS: Average publication rates for the final included articles (n = 337) steadily increased. Indirect articles (n = 288) used sonography to explore condition etiology, assess measurement properties, inform medical procedure choice, and grade condition severity. Direct articles (n = 49) used sonography to assess outcomes, inform clinical reasoning, and aid intervention delivery. Acute UE conditions and emerging sonography technology were rarely examined, while tendon, muscle, and soft tissue conditions and grayscale imaging were common. Rheumatic and peripheral nerve conditions and Doppler imaging were more prevalent in indirect than direct articles. Among reported sonography service providers, there was a high proportion of nonradiologist clinicians. CONCLUSION: Sonography literature for UE rehabilitation demonstrates potential utility in evaluating outcomes, informing clinical reasoning, and assisting intervention delivery. A large peripheral knowledge base provides opportunities for clinical applications; however, further research is needed to determine clinical efficacy and impact for specific applications.

5.
Menopause ; 30(10): 1053-1057, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37610717

ABSTRACT

OBJECTIVE: This study aimed to examine the association of circulating senescence-associated secretory phenotype proteins, secreted by senescent cells, with indicators of women's ovarian reserve. METHODS: This secondary analysis of cross-sectional baseline survey data was undertaken by the Korean Genome and Epidemiology Study Cardiovascular Disease Association Study. A total of 223 women (aged 40-82 y), without any history of oophorectomy, hysterectomy, or other medical conditions that could lower the ovarian reserve, were enrolled in this analysis. Chronological age (years), menopausal status, and serum anti-müllerian hormone (ng/mL) level were used to assess the associations among biological aging, accelerated menopausal aging, and ovarian reserve. RESULTS: Of the 223 women participants (53.4 ± 11.0 y), 147 (46.4 ± 3.9 y) and 76 (67.0 ± 6.9 y) were premenopausal and postmenopausal, respectively. Serum levels of senescence-associated secretory phenotype proteins were generally higher in postmenopausal, than in premenopausal, women. In the analyses adjusted for chronological age and body mass index, 17 senescence-associated secretory phenotype proteins were associated with menopausal status. However, in premenopausal women, no association trends with the level of anti-müllerian hormone were detected for a total of 28 senescence-associated secretory phenotype proteins. CONCLUSIONS: In a cohort of middle-aged/older women, the level of circulating senescence-associated secretory phenotype proteins indicated chronological age and menopausal status. Yet, serum levels of senescence-associated secretory phenotype protein potentially have limited predictive value for ascertaining ovarian reserve in premenopausal women.


Subject(s)
Ovarian Reserve , Middle Aged , Female , Humans , Aged , Cross-Sectional Studies , Anti-Mullerian Hormone , Senescence-Associated Secretory Phenotype , Menopause
6.
BMC Cancer ; 23(1): 490, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37259024

ABSTRACT

BACKGROUND: Thrombocytopenia is a common complication in cancer patients undergoing chemotherapy. Chemotherapy-induced thrombocytopenia (CIT) leads to dose reduction and treatment delays, lowering chemotherapy efficacy and survival rate. Thus, rapid recovery and continuous maintenance of platelet count during chemotherapy cycles are crucial in patients with CIT. Thrombopoietin (TPO) and its receptor, myeloid proliferative leukemia (MPL) protein, play a major role in platelet production. Although several MPL agonists have been developed to regulate thrombopoiesis, none have been approved for the management of CIT due to concerns regarding efficacy or safety. Therefore, the development of effective MPL agonists for treating CIT needs to be further expanded. METHODS: Anti-MPL antibodies were selected from the human combinatorial antibody phage libraries using phage display. We identified 2R13 as the most active clone among the binding antibodies via cell proliferation assay using BaF3/MPL cells. The effect of 2R13 on megakaryocyte differentiation was evaluated in peripheral blood CD34+ cells by analyzing megakaryocyte-specific differentiation markers (CD41a+ and CD42b+) and DNA ploidy using flow cytometry. The 2R13-induced platelet production was examined in 8- to 10-week-old wild-type BALB/c female mice and a thrombocytopenia mouse model established by intraperitoneal injection of 5-fluorouracil (150 mg/kg). The platelet counts were monitored twice a week over 14 days post-initiation of treatment with a single injection of 2R13, or recombinant human TPO (rhTPO) for seven consecutive days. RESULTS: We found that 2R13 specifically interacted with MPL and activated its signaling pathways. 2R13 stimulated megakaryocyte differentiation, evidenced by increasing the proportion of high-ploidy (≥ 8N) megakaryocytes in peripheral blood-CD34+ cells. The platelet count was increased by a single injection of 2R13 for up to 14 days. Injection of 5-fluorouracil considerably reduced the platelet count by day 4, which was recovered by 2R13. The platelets produced by 2R13 sustained a higher count than that achieved using seven consecutive injections of rhTPO. CONCLUSIONS: Our findings suggest that 2R13 is a promising therapeutic agent for CIT treatment.


Subject(s)
Antineoplastic Agents , Thrombocytopenia , Mice , Animals , Humans , Female , Receptors, Thrombopoietin , Blood Platelets/metabolism , Thrombopoiesis , Antibodies , Recombinant Proteins/adverse effects , Antigens, CD34 , Fluorouracil/therapeutic use , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy , Antineoplastic Agents/adverse effects
7.
J Cachexia Sarcopenia Muscle ; 14(3): 1441-1453, 2023 06.
Article in English | MEDLINE | ID: mdl-37017344

ABSTRACT

BACKGROUND: Patients with cancer undergoing chemotherapy experience cachexia with anorexia, body weight loss, and the depletion of skeletal muscles and adipose tissues. Effective treatment strategies for chemotherapy-induced cachexia are scarce. The growth differentiation factor 15 (GDF15)/GDNF family receptor alpha-like (GFRAL)/rearranged during transfection (RET) axis is a critical signalling pathway in chemotherapy-induced cachexia. In this study, we developed a fully human GFRAL antagonist antibody and investigated whether it inhibits the GDF15/GFRAL/RET axis, thereby alleviating chemotherapy-induced cachexia in tumour-bearing mice. METHODS: Anti-GFRAL antibodies were selected via biopanning, using a human combinatorial antibody phage library. The potent GFRAL antagonist antibody A11 was selected via a reporter cell assay and its inhibitory activity of GDF15-induced signalling was evaluated using western blotting. To investigate the in vivo function of A11, a tumour-bearing mouse model was established by inoculating 8-week-old male C57BL/6 mice with B16F10 cells (n = 10-16 mice per group). A11 was administered subcutaneously (10 mg/kg) 1 day before intraperitoneal treatment with cisplatin (10 mg/kg). Animals were assessed for changes in food intake, body weight, and tumour volume. Plasma and key metabolic tissues such as skeletal muscles and adipose tissues were collected for protein and mRNA expression analysis. RESULTS: A11 reduced serum response element-luciferase reporter activity up to 74% (P < 0.005) in a dose-dependent manner and blocked RET phosphorylation up to 87% (P = 0.0593), AKT phosphorylation up to 28% (P = 0.0593) and extracellular signal regulatory kinase phosphorylation up to 75% (P = 0.0636). A11 inhibited the action of cisplatin-induced GDF15 on the brainstem and decreased GFRAL-positive neuron population expressing c-Fos in the area postrema and nucleus of the solitary tract by 62% in vivo (P < 0.05). In a melanoma mouse model treated with cisplatin, A11 recovered anorexia by 21% (P < 0.05) and tumour-free body weight loss by 13% (P < 0.05). A11 significantly improved the cisplatin-induced loss of skeletal muscles (quadriceps: 21%, gastrocnemius: 9%, soleus: 13%, P < 0.05) and adipose tissues (epididymal white adipose tissue: 37%, inguinal white adipose tissue: 51%, P < 0.05). CONCLUSIONS: Our study suggests that GFRAL antagonist antibody may alleviate chemotherapy-induced cachexia, providing a novel therapeutic approach for patients with cancer experiencing chemotherapy-induced cachexia.


Subject(s)
Antineoplastic Agents , Melanoma , Mice , Humans , Male , Animals , Cachexia/chemically induced , Cachexia/drug therapy , Glial Cell Line-Derived Neurotrophic Factor , Anorexia/metabolism , Cisplatin , Mice, Inbred C57BL , Antineoplastic Agents/adverse effects
8.
J Korean Soc Radiol ; 83(5): 1090-1103, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36276204

ABSTRACT

Purpose: To evaluate the diagnostic performance of digital breast tomosynthesis (DBT) with the two-dimensional synthesized mammogram (2DSM), compared to full-field digital mammography (FFDM), for suspicious microcalcifications in the breast ahead of stereotactic biopsy and to assess the diagnostic image visibility of the images. Materials and Methods: This retrospective study involved 189 patients with microcalcifications, which were histopathologically verified by stereotactic breast biopsy, who underwent DBT with 2DSM and FFDM between January 8, 2015, and January 20, 2020. Two radiologists assessed all cases of microcalcifications based on Breast Imaging Reporting and Data System (BI-RADS) independently. They were blinded to the histopathologic outcome and additionally evaluated lesion visibility using a five-point scoring scale. Results: Overall, the inter-observer agreement was excellent (0.9559). Under the setting of category 4A as negative due to the low possibility of malignancy and to avoid the dilution of malignancy criteria in our study, McNemar tests confirmed no significant difference between the performances of the two modalities in detecting microcalcifications with a high potential for malignancy (4B, 4C, or 5; p = 0.1573); however, the tests showed a significant difference between their performances in detecting microcalcifications with a high potential for benignancy (4A; p = 0.0009). DBT with 2DSM demonstrated superior visibility and diagnostic performance than FFDM in dense breasts. Conclusion: DBT with 2DSM is superior to FFDM in terms of total diagnostic accuracy and lesion visibility for benign microcalcifications in dense breasts. This study suggests a promising role for DBT with 2DSM as an accommodating tool for stereotactic biopsy in female with dense breasts and suspicious breast microcalcifications.

9.
Diagnostics (Basel) ; 12(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36292028

ABSTRACT

Despite the importance of tumor-infiltrating lymphocytes (TIL) and PD-L1 expression to the immune checkpoint inhibitor (ICI) response, a comprehensive assessment of these biomarkers has not yet been conducted in neuroendocrine neoplasm (NEN). We collected 218 NENs from multiple organs, including 190 low/intermediate-grade NENs and 28 high-grade NENs. TIL distribution was derived from Lunit SCOPE IO, an artificial intelligence (AI)-powered hematoxylin and eosin (H&E) analyzer, as developed from 17,849 whole slide images. The proportion of intra-tumoral TIL-high cases was significantly higher in high-grade NEN (75.0% vs. 46.3%, p = 0.008). The proportion of PD-L1 combined positive score (CPS) ≥ 1 case was higher in high-grade NEN (85.7% vs. 33.2%, p < 0.001). The PD-L1 CPS ≥ 1 group showed higher intra-tumoral, stromal, and combined TIL densities, compared to the CPS < 1 group (7.13 vs. 2.95, p < 0.001; 200.9 vs. 120.5, p < 0.001; 86.7 vs. 56.1, p = 0.004). A significant correlation was observed between TIL density and PD-L1 CPS (r = 0.37, p < 0.001 for intra-tumoral TIL; r = 0.24, p = 0.002 for stromal TIL and combined TIL). AI-powered TIL analysis reveals that intra-tumoral TIL density is significantly higher in high-grade NEN, and PD-L1 CPS has a positive correlation with TIL densities, thus showing its value as predictive biomarkers for ICI response in NEN.

10.
Biomaterials ; 289: 121765, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36067566

ABSTRACT

Extracellular vesicles (EVs) mediate cell-cell crosstalk by carrying bioactive molecules derived from cells. Recently, immune cell-derived EVs have been reported to regulate key biological functions such as tumor progression. CD4+ T cells orchestrate overall immunity; however, the biological role of their EVs is unclear. This study reveals that EVs derived from CD4+ T cells increase the antitumor response of CD8+ T cells by enhancing their proliferation and activity without affecting regulatory T cells (Tregs). Moreover, EVs derived from interleukin-2 (IL2)-stimulated CD4+ T cells induce a more enhanced antitumor response of CD8+ T cells compared with that of IL2-unstimulated CD4+ T cell-derived EVs. Mechanistically, miR-25-3p, miR-155-5p, miR-215-5p, and miR-375 within CD4+ T cell-derived EVs are responsible for the induction of CD8+ T cell-mediated antitumor responses. In a melanoma mouse model, the EVs potently suppress tumor growth through CD8+ T cell activation. This study demonstrates that the EVs, in addition to IL2, are important mediators between CD4+ and CD8+ T cells. Furthermore, unlike IL2, clinically used as an antitumor agent, CD4+ T cell-derived EVs stimulate CD8+ T cells without activating Tregs. Therefore, CD4+ T cell-derived EVs may provide a novel direction for cancer immunotherapy by inducing a CD8+ T cell-mediated antitumor response.


Subject(s)
Extracellular Vesicles , MicroRNAs , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interleukin-2 , Mice , T-Lymphocytes, Regulatory
11.
Sci Adv ; 8(38): eabn3181, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36129985

ABSTRACT

Efficient doping for modulating electrical properties of two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors is essential for meeting the versatile requirements for future electronic and optoelectronic devices. Because doping of semiconductors, including TMDCs, typically involves generation of charged dopants that hinder charge transport, tackling Coulomb scattering induced by the externally introduced dopants remains a key challenge in achieving ultrahigh mobility 2D semiconductor systems. In this study, we demonstrated remote charge transfer doping by simply inserting a hexagonal boron nitride layer between MoS2 and solution-deposited n-type dopants, benzyl viologen. A quantitative analysis of temperature-dependent charge transport in remotely doped devices supports an effective suppression of the dopant-induced scattering relative to the conventional direct doping method. Our mechanistic investigation of the remote doping method promotes the charge transfer strategy as a promising method for material-level tailoring of electrical and optoelectronic devices based on TMDCs.

12.
Aging (Albany NY) ; 14(15): 6006-6027, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35951358

ABSTRACT

Aging is a risk factor for the development of osteoarthritis (OA), a progressive joint disease leading to cartilage damage, pain, and loss of function. In a mouse model of OA, senolytic drugs to selectively clear senescent cells (SnCs) that accumulate with injury or aging yielded a chondroprotective effect; however, this therapeutic benefit was limited in aged mice. Due to inconsistency between cartilage destruction and pain-associated symptoms, we studied the therapeutic effect of senolytics on joint pain in spontaneous OA. We orally treated 21- and 22-month old mice with an ABT263 and Dasatinib and Quercetin (D+Q) drug combination. Selective elimination of the SnCs that accumulated in the articular cartilage and synovium by these two drugs did not alter cartilage degeneration and abnormal bone changes during spontaneous OA progression. Treatment reduced thermal and mechanical hyperalgesia associated with OA and peripheral sensitization through decreased expression of axon guidance proteins (nerve growth factor NGF/TrkA) and nociceptive neuron (calcitonin gene-related peptide, CGRP) projection to the synovium, subchondral bone marrow, and dorsal root ganglion, and knee joint angiogenesis. Selective removal of the SnCs from in vitro cultures of synovial cells from human OA patients also decreased expression of senescent markers, axonal growth-promoting factors, such as NGF, and angiogenesis markers. We suggest that systemic administration of ABT263 and D+Q is an exciting therapeutic approach to age-related OA pain.


Subject(s)
Nerve Growth Factor , Osteoarthritis , Animals , Humans , Mice , Nociception , Osteoarthritis/metabolism , Pain , Pharmaceutical Preparations , Senotherapeutics
13.
Nat Commun ; 13(1): 4263, 2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35871221

ABSTRACT

Embedding metal-halide perovskite particles within an insulating host matrix has proven to be an effective strategy for revealing the outstanding luminescence properties of perovskites as an emerging class of light emitters. Particularly, unexpected bright green emission observed in a nominally pure zero-dimensional cesium-lead-bromide perovskite (Cs4PbBr6) has triggered intensive research in better understanding the serendipitous incorporation of emissive guest species within the Cs4PbBr6 host. However, a limited controllability over such heterostructural configurations in conventional solution-based synthesis methods has limited the degree of freedom in designing synthesis routes for accessing different structural and compositional configurations of these host-guest species. In this study, we provide means of enhancing the luminescence properties in the nominal Cs4PbBr6 powder through a guided heterostructural configuration engineering enabled by solid-state mechanochemical synthesis. Realized by an in-depth study on time-dependent evaluation of optical and structural properties during the synthesis of Cs4PbBr6, our target-designed synthesis protocol to promote the endotaxial formation of Cs4PbBr6/CsPbBr3 heterostructures provides key insights for understanding and designing kinetics-guided syntheses of highly luminescent perovskite emitters for light-emitting applications.

14.
Rejuvenation Res ; 25(3): 141-148, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35583231

ABSTRACT

We aimed to investigate the association of circulatory senescence-associated secretory phenotypes (SASPs) produced by senescent cells with chronological and menopausal age in women aged 45 years or more. The proteomic profiles for 32 SASP factors of plasma samples were measured in 76 healthy postmenopausal women aged 46-82 years from the Korean Genome and Epidemiology Study Cardiovascular Disease Association Study (KoGES-CAVAS). We assessed the association between the SASP factors and aging indicators (chronological age, menopausal age, and years since menopause) using single- and multiprotein models. First, we composed a profile of proteins associated with chronological age, menopausal age, and years since menopause. In a single-protein model, three proteins (growth differentiation factor 15 [GDF15], insulin-like growth factor binding protein-2 [IGFBP-2], and tumor necrosis factor-α [TNF-α]) are positively associated with chronological age. Menopausal age and years since menopause are interrelated with interleukin-8 (IL-8). The direction of association between menopausal age and monocyte chemoattractant protein-1 (MCP-1) was only negative, and IGFBP-2 and TNF-α were significant in all three aging factors. We also constructed parsimonious multiprotein models to confirm the association of the proteomic signature for aging after adjusting for covariates and the combination of proteomic signature of 13 proteins (GDF15, interferon-γ [IFN-γ], IGFBP-2, IGFBP-7, IL-15, IL-1ß, IL-17A, IL-8, MCP-1, tissue inhibitors of metalloproteinase-2 [TIMP-2], TNF-α, vascular endothelial growth factor-A [VEGF-A], and interferon-inducible protein 10 [IP-10]) appear to be associated with chronological age and menopausal state of individuals. Thus, by observing association between the selected SASPs and age-related markers among healthy postmenopausal women, we examine how menopause in women relates to proteomic indicators of aging and highlight the potential use of SASP factors as a marker to reflect the state of biological aging attributed by ovarian senescence.


Subject(s)
Aging , Cellular Senescence , Proteome , Aged , Aged, 80 and over , Aging/metabolism , Biomarkers , Chemokine CCL2/metabolism , Female , Growth Differentiation Factor 15/metabolism , Humans , Insulin-Like Growth Factor Binding Protein 2/metabolism , Interleukin-8/metabolism , Matrix Metalloproteinase 2/metabolism , Middle Aged , Postmenopause , Proteomics , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
15.
ACS Nano ; 16(4): 6215-6223, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35377600

ABSTRACT

Surface charge transfer doping (SCTD) has been regarded as an effective approach to tailor the electrical characteristics of atomically thin transition metal dichalcogenides (TMDs) in a nondestructive manner due to their two-dimensional nature. However, the difficulty of achieving rationally controlled SCTD on TMDs via conventional doping methods, such as solution immersion and dopant vaporization, has impeded the realization of practical optoelectronic and electronic devices. Here, we demonstrate controllable SCTD of molybdenum disulfide (MoS2) field-effect transistors using inkjet-printed benzyl viologen (BV) as an n-type dopant. By adjusting the BV concentration and the areal coverage of inkjet-printed BV dopants, controllable SCTD results in BV-doped MoS2 FETs with elaborately tailored electrical performance. Specifically, the suggested solvent system creates well-defined droplets of BV ink having a volume of ∼2 pL, which allows the high spatial selectivity of SCTD onto the MoS2 channels by depositing the BV dopant on demand. Our inkjet-printed SCTD method provides a feasible solution for achieving controllable doping to modulate the electrical and optical performances of TMD-based devices.

16.
ACS Nano ; 16(4): 5376-5383, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35377607

ABSTRACT

Recently there has been growing interest in avalanche multiplication in two-dimensional (2D) materials and device applications such as avalanche photodetectors and transistors. Previous studies have mainly utilized unipolar semiconductors as the active material and focused on developing high-performance devices. However, fundamental analysis of the multiplication process, particularly in ambipolar materials, is required to establish high-performance electronic devices and emerging architectures. Although ambipolar 2D materials have the advantage of facile carrier-type tuning through electrostatic gating, simultaneously allowing both carrier types in a single channel poses an inherent difficulty in analyzing their individual contributions to avalanche multiplication. In ambipolar field-effect transistors (FETs), two phenomena of ambipolar transport and avalanche multiplication can occur, and both exhibit secondary rise of output current at high lateral voltage. We distinguished these two competing phenomena using the method of channel length modulation and successfully analyzed the properties of electron- and hole-initiated multiplication in ambipolar WSe2 FETs. Our study provides a simple and robust method to examine carrier multiplication in ambipolar materials and will foster the development of high-performance atomically thin electronic devices utilizing avalanche multiplication.

17.
NeuroRehabilitation ; 51(1): 51-63, 2022.
Article in English | MEDLINE | ID: mdl-35311717

ABSTRACT

BACKGROUND: Robot-assisted gait training (RAGT) was initially developed based on the passive controlled (PC) mode, where the target or ideal locomotor kinematic trajectory is predefined and a patient basically 'rides' the robot instead of actively participating in the actual locomotor relearning process. A new insightful contemporary neuroscience and mechatronic evidence suggest that robotic-based locomotor relearning can be best achieved through active interactive (AI) mode rather than PC mode. OBJECTIVE: The purpose of this study was to compare the pattern of gait-related cortical activity, specifically gait event-related spectral perturbations (ERSPs), and muscle activity from the tibialis anterior (TA) and clinical functional tests in subacute and chronic stroke patients during robot-assisted gait training (RAGT) in passive controlled (PC) and active interactive (AI) modes. METHODS: The present study involves a two-group pretest-posttest design in which two groups (i.e., PC-RAGT group and AI-RAGT group) of 14 stroke subjects were measured to assess changes in ERSPs, the muscle activation of TA, and the clinical functional tests, following 15- 18 sessions of intervention according to the protocol of each group. RESULTS: Our preliminary results demonstrated that the power in the µ band (8- 12 Hz) was increased in the leg area of sensorimotor cortex (SMC) and supplementary motor area (SMA) at post-intervention as compared to pre-intervention in both groups. Such cortical neuroplasticity change was associated with TA muscle activity during gait and functional independence in functional ambulation category (FAC) and motor coordination in Fugl- Meyer Assessment for lower extremity (FMA-LE) test as well as spasticity in the modified Ashworth scale (MAS) measures. CONCLUSIONS: We have first developed a novel neuroimaging experimental paradigm which distinguished gait event related cortical involvement between pre- and post-intervention with PC-RAGT and AI-RAGT in individuals with subacute and chronic hemiparetic stroke.


Subject(s)
Gait Disorders, Neurologic , Robotics , Sensorimotor Cortex , Stroke Rehabilitation , Stroke , Gait/physiology , Humans , Robotics/methods , Stroke Rehabilitation/methods
18.
Biomol Ther (Seoul) ; 30(3): 221-231, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34615771

ABSTRACT

Adiponectin (Ad), a 30 kDa molecule, is an anti-diabetic adipokine; although derived from adipose tissue, it performs numerous activities in various other tissues. It binds to its own receptors, namely adiponectin receptor 1(AdipoR1), adiponectin receptor 2 (AdipoR2), and T-cadherin (CDH13). Ad plays several roles, especially as a regulator. It modulates lipid and glucose metabolism and promotes insulin sensitivity. This demonstrates that Ad has a robust correlation with fat metabolism. Furthermore, although Ad is not in direct contact with other tissues, including the skin, it can be delivered to them by diffusion or secretion via the endocrine system. Recently it has been reported that Ad can impact skin cell biology, underscoring its potential as a therapeutic biomarker of skin diseases. In the present review, we have discussed the association between skin cell biology and Ad. To elaborate further, we described the involvement of Ad in the biology of various types of cells in the skin, such as keratinocytes, fibroblasts, melanocytes, and immune cells. Additionally, we postulated that Ad could be employed as a therapeutic target to maintain skin homeostasis.

19.
Article in English | MEDLINE | ID: mdl-36612412

ABSTRACT

This randomized controlled study aimed to investigate the effects of art psychotherapy on moderate-to-severe major depressive disorder (MDD). Forty-two MDD patients were recruited from a psychiatric outpatient clinic in Seoul, the Republic of Korea. Participants were allocated on a randomized, open-label basis to either an experimental group, wherein they were treated with art psychotherapy added to pharmacotherapy, or a control group, wherein they were treated with pharmacotherapy alone. Pre- and post-test measures of the Hamilton Depression Rating Scale, Beck Depression Inventory-II, and remission rates were measured. The results indicate that patients treated with art psychotherapy and ongoing pharmacotherapy showed slightly greater improvement when compared with pharmacotherapy alone in moderate-to-severe MDD. These results suggest that art psychotherapy could be an effective add-on strategy for the treatment of moderate-to-severe MDD. However, a rigorous test would facilitate a better understanding of art psychotherapy as an add-on strategy for MDD treatment.


Subject(s)
Art Therapy , Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/psychology , Antidepressive Agents/therapeutic use , Psychotherapy/methods , Research Design , Combined Modality Therapy , Treatment Outcome
20.
Nanotechnology ; 33(6)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34715679

ABSTRACT

A hybrid organic-inorganic halide perovskite is a promising material for developing efficient solar cell devices, with potential applications in space science. In this study, we synthesized methylammonium lead iodide (MAPbI3) perovskites via two methods: mechanochemical synthesis and flash evaporation. We irradiated these perovskites with highly energetic 10 MeV proton-beam doses of 1011, 1012, 1013, and 4 × 1013protons cm-2and examined the proton irradiation effects on the physical properties of MAPbI3perovskites. The physical properties of the mechanochemically synthesized MAPbI3perovskites were not considerably affected after proton irradiation. However, the flash-evaporated MAPbI3perovskites showed a new peak in x-ray diffraction and an increased fluorescence lifetime in time-resolved photoluminescence under high-dose conditions, indicating considerable changes in their physical properties. This difference in behavior between MAPbI3perovskites synthesized via the abovementioned two methods may be attributed to differences in radiation hardness associated with the bonding strength of the constituents, particularly Pb-I bonds. Our study will help to understand the radiation effect of proton beams on organometallic halide perovskite materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...