Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35563830

ABSTRACT

Endothelial cells (ECs), lining blood vessels' lumen, play an essential role in regulating vascular functions. As multifunctional components of vascular structures, pluripotent stem cells (PSCs) are the promising source for potential therapeutic applications in various vascular diseases. Our laboratory has previously established an approach for differentiating porcine epiblast stem cells (pEpiSCs) into ECs, representing an alternative and potentially superior cell source. However, the condition of pEpiSCs-derived ECs growth has yet to be determined, and whether pEpiSCs differentiate into functional ECs remained unclear. Changes in morphology, proliferation and functional endothelial marker were assessed in pEpiSCs-derived ECs in vitro. pEpiSCs-derived ECs were subjected to magnetic-activated cell sorting (MACS) to collect CD-31+ of ECs. We found that sorted ECs showed the highest proliferation rate in differentiation media in primary culture and M199 media in the subculture. Next, sorted ECs were examined for their ability to act as typical vascular ECs through capillary-like structure formation assay, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and three-dimensional spheroid sprouting. Consequently, pEpiSCs-derived ECs function as typical vascular ECs, indicating that pEpiSC-derived ECs might be used to develop cell therapeutics for vascular disease.


Subject(s)
Endothelial Cells , Pluripotent Stem Cells , Animals , Cell Differentiation , Cell Proliferation , Germ Layers , Swine
2.
Cell Reprogram ; 23(2): 89-98, 2021 04.
Article in English | MEDLINE | ID: mdl-33861642

ABSTRACT

Pluripotent stem cells (PSCs) have the ability of self-renewal that can retain the characteristics of the mother cell, and of pluripotency that can differentiate into several body types. PSCs typically include embryonic stem cells (ESCs) derived from the inner cell mass of the preimplantation embryo, and epiblast stem cells (EpiSCs) derived from the epiblast of postimplantation embryo. Although PSCs are able to be used by differentiation into endothelial cells as a potential treatment for vascular diseases, human ESCs and induced PSCs (iPSCs) are followed by ethical and safety issues. Pigs are anatomically and physiologically similar to humans. Therefore, the goal of this study was to establish an efficient protocol that differentiates porcine EpiSCs (pEpiSCs) into the endothelial cells for applying the treatment of human vascular diseases. As a result, alkaline phosphatase (AP)-negative (-) pEpiSCs cultured in endothelial cell growth basal medium-2 (EBM-2) differentiation medium in association with 50 ng/mL of vascular endothelial growth factor (VEGF) for 8 days were changed morphologically like the feature of endothelial cells, and expression of pluripotency-associated markers (OCT-3/4, NANOG, SOX2, and C-MYC) in porcine differentiated cells was significantly decreased (p < 0.05). Additionally, when pEpiSCs were cultured in EBM-2 + 50 ng/mL of VEGF, porcine differentiated cells represented a common endothelial cell marker positive (CD31+) but monocytes and lymphocytes marker negative (CD45-). Therefore, these results indicated that pEpiSCs cultured in EBM-2 + 50 ng/mL of VEGF culture condition were efficiently differentiated into endothelial cells for the treatment of blood vessel diseases.


Subject(s)
Cell Differentiation , Embryonic Development , Embryonic Stem Cells/cytology , Endothelial Cells/cytology , Germ Layers/cytology , Pluripotent Stem Cells/cytology , Animals , Embryonic Stem Cells/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation, Developmental , Germ Layers/metabolism , Pluripotent Stem Cells/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...