Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; 63(32): 11010-11025, 2023.
Article in English | MEDLINE | ID: mdl-35703070

ABSTRACT

Packaging ensures the safe handling and distribution of fresh and processed food products via diverse supply chains, and has become an indispensable component of the food industry. However, the rapidly expanding use of plastics, especially single-use plastics, as packaging material leads to inadequate waste management, littering, and consequently serious environmental damage, which predominantly affects marine and freshwater sources. Thus, the use of plastics for packaging purposes has become a major public concern and hence a concern among global policymakers. Notably, 26% of the total volume of global plastic production is primarily used for packaging, of which single-use plastics account for 50%, resulting in pollution that may last hundreds of years. This review provides an overview of the manner in which molded pulp products can be utilized to improve sustainability of food packaging applications, by highlighting the manufacturing processes, signifying characteristics features of recyclable molded pulp, and coupling circularity with eco-friendly and safe food product packaging. In this regard, current concepts advocate the implementation of a dynamic and sustainable approach using molded pulp products. This approach encompasses the design and production of eco-friendly packaging, distribution and consumption of packaged products, and collection and recycling of used packaging for subsequent reuse.


Subject(s)
Plastics , Recycling , Food Packaging , Food , Fresh Water
2.
J Food Sci ; 75(2): M65-71, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20492243

ABSTRACT

Listeria monocytogenes and Salmonella typhimurium are major bacterial pathogens associated with poultry products. Ally isothiocyanate (AITC), a natural antimicrobial compound, is reportedly effective against these pathogenic organisms. A device was designed for the controlled release of AITC with modified atmosphere packaging (MAP), and then evaluated for its ability to control the growth of L. monocytogenes and S. typhimurium on raw chicken breast during refrigerated storage. In order to obtain controlled release during the test period, a glass vial was filled with AITC and triglyceride. It was then sealed using high-density polyethylene film. The release of AITC was controlled by the concentration (mole fraction) of AITC in the triglyceride and by the AITC vapor permeability through the film. The fresh chicken samples were inoculated with one or the other of the pathogens at 10(4) CFU/g, and the packages (with and without AITC-controlled release device) were flushed with ambient air or 30% CO(2)/70% N(2) before sealing, and then stored at 4 degrees C for up to 21 d. The maximum reduction in MAP plus AITC (compared to MAP alone) was 0.77 log CFU/g for L. monocytogenes and 1.3 log CFU/g for S. typhimurium. The color of the chicken breast meat was affected by the concentration of AITC. Overall, a release rate of 0.6 microg/h of AITC was found to not affect the color, whereas at 1.2 microg/h of AITC the surface of the chicken was discolored.


Subject(s)
Food Packaging/methods , Isothiocyanates/pharmacology , Listeria monocytogenes/growth & development , Meat/microbiology , Salmonella typhimurium/growth & development , Animals , Carbon Dioxide/metabolism , Chickens/microbiology , Colony Count, Microbial , Food Microbiology , Hydrogen-Ion Concentration , Microbial Sensitivity Tests/methods , Nitrogen/metabolism , Pigmentation
SELECTION OF CITATIONS
SEARCH DETAIL
...