Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 11952, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099763

ABSTRACT

In this paper, we propose a real-time prediction model that can respond to particulate matters (PM) in the air, which are an indication of poor air quality. The model applies interpolation to air quality and weather data and then uses a Convolutional Neural Network (CNN) to predict PM concentrations. The interpolation transforms the irregular spatial data into an equally spaced grid, which the model requires. This combination creates the interpolated CNN (ICNN) model that we use to predict PM10 and PM2.5 concentrations. The PM10 and PM2.5 evaluation results show an effective prediction performance with an R-squared higher than 0.97 and a root mean square error (RMSE) of approximately 16% of the standard deviation. Furthermore, both PM10 and PM2.5 prediction models forecast high concentrations with high reliability, with a probability of detection higher than 0.90 and a critical success index exceeding 0.85. The proposed ICNN prediction model achieves a high prediction performance using spatio-temporal information and presents a new direction in the prediction field.

SELECTION OF CITATIONS
SEARCH DETAIL
...