Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Transl Vis Sci Technol ; 9(4): 1, 2020 03.
Article in English | MEDLINE | ID: mdl-32818089

ABSTRACT

Purpose: Continuous monitoring of elevated intraocular pressure and timely drug delivery for successful treatment of glaucoma are necessary to reduce intraocular pressure (IOP), which shows wide variations across the circadian pattern and in response to medication. This in vivo study presents a new contact lens-based method of optical IOP measurement or temperature-triggered drug elution. Methods: A contact lens with moiré patterns of concentric circles measures the changes in eyeball diameter of a rabbit glaucoma model due to changes in IOP by superimposing a camera-captured image onto the micro pattern of the contact lens with a computer-assisted virtual reference image. Drug elution from the nanoporous bicontinuous microemulsion contact lens (BME-CL) into the eye of the rabbit was triggered by a temperature-responsive nanogel drug carrier. Results: The moiré pattern change on the contact lens was proportional to the IOP increase in the rabbit eye either ex vivo or in vivo and was also correlated with imaging-based alterations in the anterior chamber angle at a range of IOP values (3-40 mm Hg). The cumulative drug absorbed reached as high as 10.6 µg/mL aqueous humor until 7 days after wearing the BME-CL, and a 33% decrease in IOP was observed at 3 hours after drug elution. Conclusions: The results suggest that continuous measurement and treatment of elevated IOP are feasible using moiré pattern-inscribed and thermosensitive drug-eluting contact lenses, respectively. Translational Relevance: Pressure-sensing or thermosensitive contact lenses enable monitoring IOP or drug release triggered by body temperature for the treatment of glaucoma patients.


Subject(s)
Contact Lenses , Tonometry, Ocular , Animals , Drug Liberation , Humans , Intraocular Pressure , Rabbits , Temperature
2.
J Phys Chem Lett ; 6(9): 1729-35, 2015 May 07.
Article in English | MEDLINE | ID: mdl-26263341

ABSTRACT

We report on ferroelectric polarization behavior in CH3NH3PbI3 perovskite in the dark and under illumination. Perovskite crystals with three different sizes of 700, 400, and 100 nm were prepared for piezoresponse force microscopy (PFM) measurements. PFM results confirmed the formation of spontaneous polarization in CH3NH3PbI3 in the absence of electric field, where the size dependency to polarization was not significant. Whereas the photoinduced stimulation was not significant without an external electric field, the stimulated polarization by poling was further enhanced under illumination. The retention of ferroelectric polarization was also observed after removal of the electric field, in which larger crystals showed longer retention behavior compared to the smaller sized one. Additionally, we suggest the effect of perovskite crystal size (morphology) on charge collection at the interface of the ferroelectric material even though insignificant size dependency in electric polarization was observed.

3.
ACS Nano ; 9(4): 3501-9, 2015.
Article in English | MEDLINE | ID: mdl-25670211

ABSTRACT

Here we report a fully flexible, foldable nanopatterned wearable triboelectric nanogenerator (WTNG) with high power-generating performance and mechanical robustness. Both a silver (Ag)-coated textile and polydimethylsiloxane (PDMS) nanopatterns based on ZnO nanorod arrays on a Ag-coated textile template were used as active triboelectric materials. A high output voltage and current of about 120 V and 65 µA, respectively, were observed from a nanopatterned PDMS-based WTNG, while an output voltage and current of 30 V and 20 µA were obtained by the non-nanopatterned flat PDMS-based WTNG under the same compressive force of 10 kgf. Furthermore, very high voltage and current outputs with an average value of 170 V and 120 µA, respectively, were obtained from a four-layer-stacked WTNG under the same compressive force. Notably it was found there are no significant differences in the output voltages measured from the multilayer-stacked WTNG over 12 000 cycles, confirming the excellent mechanical durability of WTNGs. Finally, we successfully demonstrated the self-powered operation of light-emitting diodes, a liquid crystal display, and a keyless vehicle entry system only with the output power of our WTNG without any help of external power sources.


Subject(s)
Electric Power Supplies , Electricity , Nanotechnology/instrumentation , Textiles , Dimethylpolysiloxanes/chemistry , Mechanical Phenomena , Nanotubes/chemistry , Silver/chemistry , Zinc Oxide/chemistry
4.
Nanoscale ; 6(24): 15144-50, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25374120

ABSTRACT

Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

5.
Adv Mater ; 26(29): 5037-42, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-24848446

ABSTRACT

Hydrophobic sponge structure-based triboelectric nanogenerators using an inverse opal structured film for sustainable energy harvesting over a wide range of humid atmosphere have been successfully demonstrated. The output voltage and current density reach a record value of 130 V and 0.10 mA cm(-2) , respectively, giving over 10-fold power enhancement, compared with the flat film-based triboelectric nanogenerator.


Subject(s)
Electric Power Supplies , Hydrophobic and Hydrophilic Interactions , Mechanical Phenomena , Nanotechnology/instrumentation , Aluminum/chemistry , Dimethylpolysiloxanes/chemistry , Electric Conductivity , Static Electricity
6.
Adv Mater ; 26(32): 5619-25, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-24845823

ABSTRACT

Ferroelectric coupling effects on the energy-band structure of hybrid heterojunctions are investigated using hybrid photovoltaic devices with poly(3-hexylthiophene-2,5-diyl) (P3HT)/ZnO and poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). The self-organized P(VDF-TrFE):P3HT photoactive layer forms a novel architecture consisting of P3HT domains in a P(VDF-TrFE) matrix. The energy-band structure at the interface of the p-n heterojunction is tuned by artificial control of the ferroelectric polarization of the P(VDF-TrFE) material, consequently modulating the photovoltaic performance of the hybrid photovoltaic devices.

7.
J Nanosci Nanotechnol ; 14(7): 5207-11, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24758004

ABSTRACT

We report the synthesis of high quality single crystalline ZnO nanowall networks (NNs) using ammonia solution etching of a ZnO nanowire-nanowall heterojunction (NNH) structure. Synchrotron X-ray diffraction revealed that the full-width-at-half-maximum of the ZnO (0002) peak in the ZnO NN sample was much narrower than that of the ZnO NNH sample. Temperature-dependent photoluminescence (PL) measurements revealed more intense and narrower bound exciton peak emission in the NN sample compared to that in the NNH sample. Moreover, the clear observation of free exciton emission in the PL spectrum of the NN sample, even at temperatures as low as 30 K, suggested incorporation of a small number of impurities into the NN sample. In addition, I-V characteristics confirm the higher conductivity of the ZnO NNs as compared to those of the NNH structures, indicating that the NN sample had a superior crystalline property than NNH sample.

9.
ACS Appl Mater Interfaces ; 6(2): 1030-5, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24328244

ABSTRACT

An efficient approach to producing hexagonally self-assembled and well-dispersed gold (Au) nanoparticles (NPs) in the pores of porous anodic aluminum oxide (AAO) is reported. This approach is particularly useful for tuning the surface plasmon resonance frequency of Au NPs by varying the effective dielectric constant of AAO. A strongly enhanced Raman spectrum of dye molecule rhodamine 6G using these well-dispersed Au NPs revealed that such a self-assembled Au NP array can induce a strong plasmonic field. Furthermore, we demonstrated a new architecture of plasmon excitation in a bulk heterojunction (BHJ) inverted organic solar cell (IOSC) using the Au NP array with AAO. The optical response of an active layer poly(3-hexylthiophene):(6,6)-phenyl-C61-butyric acid methyl ester was enhanced by this strong plasmonic field associated a well-dispersed Au NP array. A comparative study of AAO with and without Au NPs confirmed plasmonic improvement of the BHJ IOSC. Simulation results showed that Au NPs concentrate the incoming light into a strongly localized field and enhance light absorption in a wide wavelength range.

10.
J Nanosci Nanotechnol ; 13(5): 3696-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23858930

ABSTRACT

The improvement of the optical output power of GaN-based light emitting diodes (LEDs) was achieved by employing nano-sized flat-top hexagonal ZnO rods. ZnO nanorods (NRs) with the average diameters of 250, 350, and 580 nm were grown on p-GaN top surfaces by a simple wet-chemical method at relatively low temperature (90 degrees C) to investigate the effect of the diameter of ZnO NRs on the light extraction efficiency. Consequently, the enhancement by the factor of as high as 2.63 in the light output intensity at 20 mA for the LED with 350 nm ZnO NRs was demonstrated without the increase in the operation voltage compared to the reference LED.


Subject(s)
Gallium/chemistry , Lighting/instrumentation , Nanostructures/chemistry , Nanostructures/ultrastructure , Semiconductors , Zinc Oxide/chemistry , Energy Transfer , Equipment Design , Equipment Failure Analysis , Materials Testing , Particle Size , Surface Properties
11.
J Nanosci Nanotechnol ; 12(2): 1234-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629928

ABSTRACT

We report on the photovoltaic (PV) performances of inverted organic solar cells (IOSCs) that were fabricated from PCBM:P3HT polymer with a ZnO thin film and ZnO nanowalls as electron transport and hole block layers. ZnO thin film on ITO/glass substrate was deposited using a simply aqueous solution route. ZnO nanowall structures were obtained via wet chemical etching of ZnO thin films in a KOH solution. The power conversion efficiency (PCE) of the IOSC with ZnO nanowalls was significantly improved by 44% from 1.254% to 1.811% compared to that of the IOSC with ZnO thin film. The short circuit current in IOSCs fabricated with the ZnO nanowalls was increased mainly due to the increase in the charge transport interface area, as a result of enhancement in the PCE. This work suggests a method for fabricating efficient PV devices with a larger charge transport area for future prospects.

12.
J Nanosci Nanotechnol ; 9(12): 7432-5, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19908803

ABSTRACT

ZnO nanorods and thin films were synthesized on Si(100) substrates at a low temperature by controlling the ZnO seed formation in an aqueous solution process. Vertically well-aligned ZnO nanorods with a single-crystalline hexagonal structure and c-axis growth orientation were obtained despite having a different crystal structure than a large lattice mismatch with the Si(100) substrate. In addition, the authors suggest that the lateral growth of ZnO nanorods causes them to merge together into ZnO thin films during growth into the aqueous solution. It is also suggested that the significant blueshift of the main emission band in the photoluminescence spectrum obtained from the nanorod sample at 10 K can be mainly attributed to Burstein-Moss effects in the ZnO nanorods.

SELECTION OF CITATIONS
SEARCH DETAIL
...