Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(2): 1069-1077, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33393768

ABSTRACT

We report a copper-catalyzed enatiotopic-group-selective allylation of gem-diborylalkanes with allyl bromides. The combination of copper(I) bromide and H8-BINOL derived phosphoramidite ligand proved to be the most effective catalytic system to provide various enantioenriched homoallylic boronate esters, containing a boron-substituted stereogenic center that is solely derived from gem-diborylalkanes, in good yields with high enantiomeric ratios under mild conditions. Experimental and theoretical studies have been conducted to elucidate the reaction mechanism, revealing how the enatiotopic-group-selective transmetalation of gem-diborylalkanes with chiral copper complex occurs to generate chiral α-borylalkyl-copper species for the first time. Additional synthetic applications to the synthesis of various chiral building blocks are also included.

2.
Org Lett ; 22(6): 2476-2480, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32149519

ABSTRACT

Reported herein is the utilization of bis[(pinacolato)boryl]methylzinc halides, whose structures are characterized via single-crystal X-ray analysis, as solid storable reagents for copper-catalyzed coupling with vinyliodonum salts. The reaction proceeds under mild conditions and shows broad scope with respect to vinyliodonium salts, affording various α-boryl-substituted allylboronate esters in good yields. Synthetic applications of the obtained products are also demonstrated.

3.
Biosci Biotechnol Biochem ; 79(9): 1535-41, 2015.
Article in English | MEDLINE | ID: mdl-26000971

ABSTRACT

Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.


Subject(s)
Acetic Acid/administration & dosage , Muscle, Skeletal/metabolism , Physical Endurance/drug effects , Adipose Tissue/metabolism , Animals , Glycogen/metabolism , Lipid Metabolism/drug effects , Mice , Muscle, Skeletal/drug effects , Oxidation-Reduction , Physical Conditioning, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...