Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 10(1): 405, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26474886

ABSTRACT

This paper performs a comparative study on the statistical-variation tolerance between two crossbar architectures which are the complementary and twin architectures. In this comparative study, 10 greyscale images and 26 black-and-white alphabet characters are tested using the circuit simulator to compare the recognition rate with varying statistical variation and correlation parameters.As with the simulation results of 10 greyscale image recognitions, the twin crossbar shows better recognition rate by 4 % on average than the complementary one, when the inter-array correlation = 1 and intra-array correlation = 0. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture can recognize better by 5.6 % on average than the complementary one.Similarly, when the inter-array correlation = 1 and intra-array correlation = 0, the twin architecture can recognize 26 alphabet characters better by 4.5 % on average than the complementary one. When the inter-array correlation = 1 and intra-array correlation = 1, the twin architecture is better by 6 % on average than the complementary one. By summary, we can conclude that the twin crossbar is more robust than the complementary one under the same amounts of statistical variation and correlation.

2.
Nanoscale Res Lett ; 8(1): 454, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24180626

ABSTRACT

In this paper, a CMOS emulator circuit that can reproduce nanoscale memristive behavior is proposed. The proposed emulator circuit can mimic the pinched hysteresis loops of nanoscale memristor memory's current-voltage relationship without using any resistor array, complicated circuit blocks, etc. that may occupy very large layout area. Instead of using a resistor array, other complicated circuit blocks, etc., the proposed emulator circuit can describe the nanoscale memristor's current-voltage relationship using a simple voltage-controlled resistor, where its resistance can be programmed by the stored voltage at the state variable capacitor. Comparing the layout area between the previous emulator circuit and the proposed one, the layout area of the proposed emulator circuit is estimated to be 32 times smaller than the previous emulator circuit. The proposed CMOS emulator circuit of nanoscale memristor memory will be very useful in developing hybrid circuits of CMOS/nanoscale memristor memory.

SELECTION OF CITATIONS
SEARCH DETAIL
...