Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(49): 33511-33522, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926900

ABSTRACT

Biodegradable cellular and acellular scaffolds have great potential to regenerate damaged tissues or organs by creating a proper extracellular matrix (ECM) capable of recruiting endogenous cells to support cellular ingrowth. However, since hydrogel-based scaffolds normally degrade through surface erosion, cell migration and ingrowth into scaffolds might be inhibited early in the implantation. This could result in insufficient de novo tissue formation in the injured area. To address these challenges, continuous and microsized strand-like networks could be incorporated into scaffolds to guide and recruit endogenous cells in rapid manner. Fabrication of such microarchitectures in scaffolds is often a laborious and time-consuming process and could compromise the structural integrity of the scaffold or impact cell viability. Here, we have developed a fast single-step approach to fabricate colloidal hydrogels, which are made up of randomly packed human serum albumin-based photo-cross-linkable microparticles with continuous internal networks of microscale voids. The human serum albumin conjugated with methacrylic groups were assembled to microsized aggregates for achieving unique porous structures inside the colloidal gels. The albumin hydrogels showed tunable mechanical properties such as elastic modulus, porosity, and biodegradability, providing a suitable ECM for various cells such as cardiomyoblasts and endothelial cells. In addition, the encapsulated cells within the hydrogel showed improved cell retention and increased survivability in vitro. Microporous structures of the colloidal gels can serve as a guide for the infiltration of host cells upon implantation, achieving rapid recruitment of hematopoietic cells and, ultimately, enhancing the tissue regeneration capacity of implanted scaffolds.

2.
Polymers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071383

ABSTRACT

Bioink is the main component of 3D bioprinting process and is crucial for the generation of sophisticated 3D structures through precise spatial control. Therefore, bioink's core material must have characteristics that support good printability as well as biocompatibility. However, there is a lack of bioinks developed that satisfy these characteristics at the same time. In this work, our aim was to develop a bioink that satisfies the needs for both printability and biocompatibility through effectively utilizing hydrocolloid materials. To do so, carboxymethyl cellulose (CMC) and xanthan gum (XG) were used to maintain proper shear properties at high pressure and increase the mechanical properties of bioink without excessively affecting the viscosity, and thus enhance printability and biocompatibility. Various bioink formulations were applied to 3D printing process and the printability optimization was carried out through adjusting the hydrocolloid contents in connection with different cross-linking methods. Through utilization of hydrocolloids, the printability and rheological analysis showed that the bioink has improved mechanical properties and confirmed that the printability could be adjusted by controlling the CMC and XG ratio. Moreover, cell viability and immunocytochemical staining analyses showed cell compatibility with enhanced stability. The proposed convenient method to control the printability with improved biocompatibility suggests more appropriate use of bioink for co-axial 3D bioprinting.

3.
Carbohydr Polym ; 251: 117036, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33142594

ABSTRACT

Thermo-sensitive injectable hydrogels that spontaneously react to physiological temperature have been widely studied to be used in biomedical fields. However, several challenges on their unstable structures with large-sized pores and low mechanical strength under physiological conditions must be addressed to enable their practical applications. We synthesized the hydroxybutyl methacrylated chitosan (HBC-MA) hydrogel that possesses both thermo-sensitive and photo-crosslinkable properties. The HBC-MA showed effective sol-gel transition under physiological temperature as well as a sensitive photo-crosslinkable property with visible light capable of skin penetration. The co-nonsolvency property and thermo-sensitivity of HBC-MA prevented unintended loss of the hydrogel graft after being subcutaneously injected in mice. Subsequently applied visible light on the skin beneath which the hydrogel was injected significantly improved the mechanical strength and stability of the graft. The injectable HBC-MA hydrogel developed in this study can be applicable to a wide range of biomedical fields such as drug delivery system and tissue engineering.


Subject(s)
Chitosan/analogs & derivatives , Hydrogels/chemistry , Tissue Engineering , Animals , Chitosan/chemistry , Injections, Subcutaneous , Light , Male , Methacrylates/chemistry , Mice , Mice, Nude , NIH 3T3 Cells , Temperature
4.
Polymers (Basel) ; 12(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076526

ABSTRACT

Bioink based 3D bioprinting is a promising new technology that enables fabrication of complex tissue structures with living cells. The printability of the bioink depends on the physical properties such as viscosity. However, the high viscosity bioink puts shear stress on the cells and low viscosity bioink cannot maintain complex tissue structure firmly after the printing. In this work, we applied dual crosslinkable bioink using Kappa-carrageenan (κ-CA) to overcome existing shortcomings. κ-CA has properties such as biocompatibility, biodegradability, shear-thinning and ionic gelation but the difficulty of controlling gelation properties makes it unsuitable for application in 3D bioprinting. This problem was solved by synthesizing methacrylated Kappa-carrageenan (MA-κ-CA), which can be dual crosslinked through ionic and UV (Ultraviolet) crosslinking to form hydrogel using NIH-3T3 cells. Through MA substitutions, the rheological properties of the gel could be controlled to reduce the shear stress. Moreover, bioprinting using the cell-laden MA-κ-CA showed cell compatibility with enhanced shape retention capability. The potential to control the physical properties through dual crosslinking of MA-κ-CA hydrogel is expected to be widely applied in 3D bioprinting applications.

5.
J Endocrinol ; 236(3): 125-136, 2018 03.
Article in English | MEDLINE | ID: mdl-29273589

ABSTRACT

PERK is a pancreatic endoplasmic reticulum (ER) kinase. Its complete deletion in pancreatic ß cells induces insulin deficiency; however, the effects of partial Perk suppression are unclear. We investigated the effect of partial PERK suppression using the specific PERK inhibitors GSK2606414 and GSK2656157. Low-dose GSK2606414 treatment for 24 h enhanced glucose-stimulated insulin secretion (GSIS), islet insulin content and calcium transit in mouse (at 40 nM) and human (at 50-100 nM) pancreatic islets. GSK2606414 also induced the expression of the ER chaperone BiP and the release of calcium from the ER. When Bip expression was inhibited using a Bip siRNA, the GSK2606414-induced augmentation of the ER calcium level, islet insulin contents, glucose-stimulated cytosolic calcium transit and GSIS were abrogated. In both wild-type and insulin-deficient Atg7-knockout mice, 8 weeks of GSK2656157 treatment enhanced GSIS and improved hyperglycemia without affecting body weight. In conclusion, partial PERK inhibition induced BiP expression in islets, increased glucose-stimulated calcium transit and islet insulin contents and enhanced GSIS, suggesting that low-dose PERK inhibitors could potentially be used to treat insulin deficiency.


Subject(s)
Enzyme Inhibitors/pharmacology , Glucose/pharmacology , Insulin Secretion/drug effects , Islets of Langerhans/metabolism , eIF-2 Kinase/antagonists & inhibitors , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Calcium/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/physiology , Female , Gene Expression/drug effects , Heat-Shock Proteins/genetics , Heat-Shock Proteins/physiology , Humans , Indoles/pharmacology , Insulin/deficiency , Islets of Langerhans/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Phosphorylation/drug effects , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...