Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Cosmet Sci ; 45(5): 636-646, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37235713

ABSTRACT

OBJECTIVE: Dark circles in the infraorbital area are a common cosmetic concern among individuals because they exhibit fatigue and are undesirable across all ages. Of the dark circle etiologies, blood stasis by poor-vascular integrity can cause darkening of the lower eyelid skin, which might be alleviated by reduced endothelial permeability. In this study, we investigated the effects of Salix alba bark extract (SABE) on the synthesis of hyaluronic acid (HA) in fibroblasts and vascular integrity protection from inflammatory cytokine. We also performed a clinical trial investigating the effect of SABE on dark circles. METHODS: To confirm the effect of SABE on HA synthesis in human dermal fibroblasts (HDFs), we performed ELISA and real-time PCR. We investigated the interaction HDF-secreted substance with vascular integrity, and human dermal microvascular endothelial cells (HMEC-1) were treated with conditioned medium (CM) from HDF treated with or without SABE. Subsequently, we conducted a clinical study on 29 subjects by having them apply SABE containing cream for 8 weeks. RESULTS: Salix alba bark extract treatment increased HA synthesis and regulated HMW-HA-related gene expressions in HDF. CM from SABE-treated HDF alleviated endothelial permeability and led to improved vascular integrity in HMEC-1 cells. Treatment with the cream containing 2% SABE for 8 weeks improved the parameters measuring dark circles, skin microcirculation and elasticity. CONCLUSION: Our results showed that SABE could protect against dark circles in vitro, and that topical treatment of SABE improved the clinical indexes of dark circles in a clinical study. Therefore, SABE can be used as an active ingredient for improving dark circles.


OBJECTIF: Les cernes dans la région infra-orbitaire sont un problème cosmétique fréquent chez les patients, car elles témoignent de la fatigue et sont indésirables à tout âge. Parmi les étiologies de cerne, la stase sanguine due à une mauvaise intégrité vasculaire peut entraîner un assombrissement de la peau de la paupière inférieure qui peut être atténué par une réduction de la perméabilité endothéliale. Dans cette étude, nous avons étudié les effets de l'extrait d'écorce de Salix alba sur la synthèse de l'acide hyaluronique (AH) dans les fibroblastes, et la protection de l'intégrité vasculaire contre les cytokines inflammatoires. Nous avons également réalisé une étude clinique portant sur l'effet de l'extrait d'écorce de Salix alba sur les cernes. MÉTHODES: Pour confirmer l'effet de l'extrait d'écorce de Salix alba sur la synthèse de l'AH dans les fibroblastes dermiques humains (Human Dermal Fibroblasts, HDF), nous avons réalisé un test ELISA et un test PCR en temps réel. Nous avons étudié l'interaction entre la substance sécrétée par les HDF et l'intégrité vasculaire, et les cellules endothéliales microvasculaires dermiques humaines (Human Dermal Microvascular Endothelial Cells, HDMEC-1) ont été traitées avec un milieu conditionné pour les HDF traité avec ou sans extrait d'écorce de Salix alba. Par la suite, nous avons mené une étude clinique auprès de 29 sujets en leur demandant d'appliquer une crème à base d'extrait d'écorce de Salix alba pendant 8 semaines. RÉSULTATS: Le traitement par extrait d'écorce de Salix alba a augmenté la synthèse de l'AH et régulé les expressions géniques liées à l'acide hyaluronique à haut poids moléculaire dans les HDF. Les milieux conditionnés pour les HDF traités par extrait d'écorce de Salix alba ont atténué la perméabilité endothéliale et ont permis une amélioration de l'intégrité vasculaire des cellules HMEC-1. Le traitement avec la crème contenant 2% d'extrait d'écorce de Salix alba pendant 8 semaines a amélioré les paramètres de mesure des cernes, la microcirculation cutanée et l'élasticité. CONCLUSION: Nos résultats ont montré que l'extrait d'écorce de Salix alba pouvait protéger contre les cernes in vitro, et que le traitement topique par extrait d'écorce de Salix alba améliorait les indices cliniques des cernes dans une étude clinique. L'extrait d'écorce de Salix alba peut donc être utilisé comme principe actif pour améliorer les cernes.


Subject(s)
Salix , Humans , Plant Bark , Endothelial Cells , Skin , Emollients , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
2.
Nutrients ; 14(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35565945

ABSTRACT

Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics. We investigated whether Isatis tinctoria L. leaf extract (ITE) inhibited senescence biomarkers p53, p21CDKN1A, and p16INK4A gene expression, and SASP secretions by inhibiting cellular senescence in the replicative senescent human dermal fibroblast (RS-HDF). ITE has been demonstrated to inhibit the secretion of SASP factors in several senomorphic types by regulating the MAPK/NF-κB pathway via its inhibitory effect on mTOR. ITE suppressed the inflammatory response by inhibiting mTOR, MAPK, and IκBα phosphorylation, and blocking the nuclear translocation of NF-κB. In addition, we observed that autophagy pathway was related to inhibitory effect of ITE on cellular senescence. From these results, we concluded that ITE can prevent and restore senescence by blocking the activation and secretion of senescence-related factors generated from RS-HDFs through mTOR-NF-κB regulation.


Subject(s)
Isatis , NF-kappa B , Cellular Senescence , Fibroblasts , Isatis/metabolism , NF-kappa B/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology , Senotherapeutics , TOR Serine-Threonine Kinases/metabolism
3.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408493

ABSTRACT

Advanced glycation end products (AGEs) have recently been increasingly discussed as one factor of skin aging. In this study, we investigated the effects of Cirsium japonicum flower (CFE) extract on glycation in relation to skin aging and skin elasticity. Moreover, we learned the main active constituent of CFE that has effects against glycation. To demonstrate the effects of CFE on glycation, we carried out an in vitro glycation study, 3-dimensional culture, and clinical study. As a result, CFE inhibited formation of AGEs in both bovine serum albumin (BSA)/glucose glycation system and aldehyde-derived glycation system. Moreover, CFE reduced Nε-(carboxymethyl), lysine (CML), and carbonylated proteins that increased by glycation. Furthermore, CFE broke crosslinks of collagen-AGEs and inhibited the increase of matrix metalloproteinase-1 (MMP-1) gene expression by AGEs. In the 3D culture condition, CFE restored the reduction of collagen gel contraction by glycation. Moreover, apigenin was detected as the main active constituent in CFE that has anti-glycation effects. In the clinical study, we confirmed that CFE has effects on skin wrinkles and skin elasticity. Our findings suggest that CFE can be used as a cosmetic or cosmeceutical ingredient for improving skin elasticity and wrinkles. Regulation of AGEs can be an interesting target for anti-aging.


Subject(s)
Cirsium , Plant Extracts , Skin Aging , Cirsium/chemistry , Collagen , Flowers/chemistry , Glycation End Products, Advanced/metabolism , Humans , Plant Extracts/pharmacology
4.
Anim Cells Syst (Seoul) ; 26(6): 310-317, 2022.
Article in English | MEDLINE | ID: mdl-36605596

ABSTRACT

Natural products and their derivatives historically represent alternatives to conventional synthetic molecules for pharmacotherapy, ranging from cancer chemotherapeutics to cosmetic ingredients that exert anti-aging activities. Cellular senescence is considered a main driver of skin aging, yet natural products that target skin senescence in a specific manner are not thoroughly explored. Here, we performed a focused compound screen to identify natural products that exert anti-senescence effects. We found that Isatis tinctoria, woad extracts, displayed a senolytic effect on senescent human skin fibroblasts. Furthermore, treatment with woad extracts attenuated the expression of pro-inflammatory senescence-associated secretory phenotype (SASP), showing a senostatic activity. Intriguingly, woad extracts displayed only a marginal cytotoxic effect toward senescent human lung fibroblasts. Thus, our results reveal the potential activities of woad extracts for targeting skin senescence and suggest that woad extracts could be an attractive ingredient for cosmetics to prevent skin aging.

5.
J Cosmet Dermatol ; 21(6): 2602-2609, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34418257

ABSTRACT

BACKGROUND: The build-up of advanced glycation end products (AGEs) is one of important factor of skin aging. Natural compounds with anti-glycation activities might have great anti-aging potential. AIMS: The objective of this study was to evaluate an anti-glycation effects of methyl gallate as a potent ingredient for anti-aging. METHODS: We first evaluated the AGEs inhibitory ability of methyl gallate in BSA/glucose system. Levels of Nε-CML and carbonyl contents were also measured in BSA/glucose system. To further investigate if methyl gallate could prevent glycation in full-thickness human skin explants. Glycation action was determined by the observation of the general morphology of dermis and epidermis structures and FBN-1 and of CML immunostaining. In an in-vivo study, primary irritation test was also performed to ensure the safety of methyl gallate for human skin. RESULTS: It is known that methyl gallate can suppress glycation reaction between BSA and glucose. Methyl gallate also has a remarkable potential to reduce the oxidation of proteins. Furthermore, the anti-glycation activity of methyl gallate has been confirmed in a human skin ex-vivo model. Methyl gallate decreased the expression of CML but stimulated the expression of FBN-1 compared with MGO treatment. In an in-vivo study, methyl gallate (0.1%) did not cause any skin irritation, suggesting that methyl gallate could be used as an active ingredient in cosmetics. CONCLUSION: Our results showed that methyl gallate could protect against glucose-mediated glycation in vitro. Furthermore, methyl gallate significantly prevented glycation in living human skin explants. Due to these beneficial effects, methyl gallate can be used to prevent or manage AGE-mediated skin aging.


Subject(s)
Gallic Acid , Skin Aging , Gallic Acid/analogs & derivatives , Glucose , Glycation End Products, Advanced/metabolism , Glycosylation , Humans
6.
PLoS One ; 16(12): e0260545, 2021.
Article in English | MEDLINE | ID: mdl-34914725

ABSTRACT

Cellular senescence causes irreversible growth arrest of cells. Prolonged accumulation of senescent cells in tissues leads to increased detrimental effects due to senescence associated secretory phenotype (SASP). Recent findings suggest that elimination of senescent cells has a beneficial effect on organismal aging and lifespan. In this study, using a validated replicative senescent human dermal fibroblasts (HDFs) model, we showed that elimination of senescent cells is possible through the activation of an apoptotic mechanism. We have shown in this replicative senescence model, that cell senescence is associated with DNA damage and cell cycle arrest (p21, p53 markers). We have shown that Silybum marianum flower extract (SMFE) is a safe and selective senolytic agent targeting only senescent cells. The elimination of the cells is induced through the activation of apoptotic pathway confirmed by annexin V/propidium iodide and caspase-3/PARP staining. Moreover, SMFE suppresses the expression of SASP factors such as IL-6 and MMP-1 in senescent HDFs. In a co-culture model of senescent and young fibroblasts, we demonstrated that senescent cells impaired the proliferative capacities of young cells. Interestingly, when the co-culture is treated with SMFE, the cell proliferation rate of young cells is increased due to the decrease of the senescent burden. Moreover, we demonstrated in vitro that senescent fibroblasts trigger senescent process in normal keratinocytes through a paracrine effect. Indeed, the conditioned medium of senescent HDFs treated with SMFE reduced the level of senescence-associated beta-galactosidase (SA-ß-Gal), p16INK4A and SASP factors in keratinocytes compared with CM of senescent HDFs. These results indicate that SMFE can prevent premature aging due to senescence and even reprograms aged skin. Indeed, thanks to its senolytic and senomorphic properties SMFE is a candidate for anti-senescence strategies.


Subject(s)
Cellular Senescence/drug effects , Plant Extracts/pharmacology , Silybum marianum/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Survival/drug effects , DNA Damage/drug effects , Dermis/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Flowers/chemistry , Flowers/metabolism , Humans , Silybum marianum/metabolism , Phytochemicals/analysis , Plant Extracts/chemistry , Senescence-Associated Secretory Phenotype/drug effects
7.
Int J Cosmet Sci ; 43(6): 703-714, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34674286

ABSTRACT

OBJECTIVE: In this study, we examined the effect of C. japonicum flower extract (CFE) on melanogenesis and its mechanism in vitro and ex vivo. METHODS: The effect of CFE on melanogenesis was investigated with lightly (HEMn-LP) and moderately (HEMn-MP) pigmented normal human melanocytes, reconstituted three-dimensional skin (3D skin) model and ex vivo human hair follicles. The melanogenesis-inducing effect of CFE was evaluated using melanin content and intracellular tyrosinase activity assay. The amount and type of eumelanin and pheomelanin were analysed by using HPLC method. The mechanism involved in the effect of CFE on hyperpigmentation was explored by cyclic adenosine monophosphate (cAMP) immunoassay and western blot analysis for tyrosinase, microphthalmia-associated transcription factor (MITF) and phosphorylated CRE-binding protein (pCREB) expression. The degree of pigmentation in 3D skin and L-values were measured using a CR-300 chroma meter. The amount of dissolved melanin was measured using a spectrophotometer. The content of melanin in the hair follicles was evaluated by Fontana Masson staining. RESULTS: C. japonicum flower extract significantly increased the melanin content and cellular tyrosinase activity in both HEMn-LP and HEMn-MP cells. The markers of pheomelanin and eumelanin in HEMn-LP and HEMn-MP were also increased by CFE. We observed that CFE treatment on melanocytes increased intracellular cAMP with inducing pCREB and up-regulating the protein levels of TYR and MITF. Furthermore, CFE considerably increased the melanin content in a 3D skin model and ex vivo human hair follicles. CONCLUSIONS: These results suggest that CFE exerts hyperpigmentation activity through cAMP signalling in human melanocytes that it can improve follicular depigmentation and vitiligo by stimulating the melanin synthesis.


OBJECTIF: Dans cette étude, nous avons examiné l'effet de l'extrait de fleur de C. japonicum (EFC) sur la mélanogenèse et son mécanisme in vitro et ex vivo. MÉTHODES: L'effet du EFC sur la mélanogenèse a été étudié avec des mélanocytes humains normaux légèrement (HEMn-LP) et modérément (HEMn-MP) pigmentés, un modèle de peau reconstituée en 3 dimensions (peau 3D) et des follicules pileux ex vivo. L'effet inducteur de la mélanogénèse de la EFC a été évalué en utilisant la teneur en mélanine et le dosage de l'activité de la tyrosinase intracellulaire. La quantité et le type d'eumélanine et de phéomélanine ont été analysés en utilisant la méthode HPLC. Le mécanisme impliqué dans l'effet de la EFC sur l'hyperpigmentation a été exploré par immunoessai à l'adénosine monophosphate cyclique (AMPc) et Western blot pour l'expression de la tyrosinase, du facteur de transcription associé à la microphtalmie (MITF) et l'expression de la protéine CREB phosphorylée. Le degré de pigmentation de la peau 3D, les valeurs L ont été mesurées à l'aide d'un chromamètre CR-300. La quantité de mélanine dissoute a été mesurée à l'aide d'un spectrophotomètre. La teneur en mélanine des follicules pileux a été évaluée par coloration Fontana Masson. RÉSULTATS: EFC a augmenté de manière significative la teneur en mélanine et l'activité de la tyrosinase cellulaire dans les cellules HEMn-LP et HEMn-MP. Les marqueurs de phéomélanine et d'eumélanine dans HEMn-LP et HEMn-MP ont également été augmentés par EFC. Nous avons observé que le traitement EFC sur les mélanocytes augmentait l'AMPc intracellulaire en induisant pCREB et en régulant à la hausse les niveaux de protéines de TYR et MITF. De plus, le EFC a considérablement augmenté la teneur en mélanine dans un modèle de peau 3D et dans les follicules pileux humains ex vivo. CONCLUSIONS: Ces résultats suggèrent que la EFC exerce une activité d'hyperpigmentation via la signalisation de l'AMPc dans les mélanocytes humains qu'elle peut améliorer la dépigmentation folliculaire et le vitiligo en stimulant la synthèse de mélanine.


Subject(s)
Hair Follicle/drug effects , Melanins/metabolism , Plant Extracts/pharmacology , Skin Lightening Preparations/pharmacology , Skin/drug effects , Vitiligo/drug therapy , Aged , Cirsium , Female , Flowers , Humans , Melanocytes/drug effects
8.
Chem Pharm Bull (Tokyo) ; 69(11): 1039-1044, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34456215

ABSTRACT

Exposure to UV radiation damages the skin and increases the risk of skin cancer. Sunscreen is used to protect the skin from the harmful effects of UV radiation. However, the chemical UV filters used in sunscreen can show toxicity and cause allergic reactions. A safe sunscreen that includes a lower content of chemical UV filters and exerts an excellent effect on UV protection needs to be developed. The objective of this study was to investigate whether the addition of afzelin to sunscreen could improve the sun protection factor (SPF). A synergistic effect between afzelin and organic sunscreen agents including padimate O and oxybenzone was confirmed. Interestingly, 100% in vitro SPF-boosting was observed when afzelin (0.05%) was applied with a standard SPF formulation containing organic sunscreens while afzelin alone had no contribution to the SPF. In vivo SPF analysis of the standard SPF formulation showed an SPF value of 13.3 that increased to 20.1 when supplemented with afzelin (0.05%). Additionally, afzelin showed no skin irritation in a human trial. These results suggest that afzelin is useful as a natural additive in sunscreen formulations and provides an SPF-boosting effect. Afzelin supplementation to the formulation showed the potential to reduce the use of synthetic photoprotectors, which could minimize the risk of synthetic agent toxicity.


Subject(s)
Cosmetics/chemistry , Mannosides/chemistry , Proanthocyanidins/chemistry , Sun Protection Factor/methods , Sunscreening Agents/chemistry , Adolescent , Adult , Benzophenones/pharmacology , Clinical Trials as Topic , Cosmetics/pharmacology , Drug Compounding , Female , Humans , Male , Mannosides/pharmacology , Middle Aged , Proanthocyanidins/pharmacology , Skin , Sunscreening Agents/pharmacology , Ultraviolet Rays , para-Aminobenzoates/pharmacology
9.
Toxicol Rep ; 8: 96-105, 2021.
Article in English | MEDLINE | ID: mdl-33437652

ABSTRACT

para-Phenylediamine (PPD), a major component of hair dyeing ingredients, can induce allergenic sensitization and exert mutagenic, tumorigenic and cytotoxic effect. In this study, we determined the cytotoxic effect of PPD on human keratinocytes and evaluated the protective effect of Rhus semialata M. extracts (RSE) on PPD induced cytotoxicity for the first time. We observed that RSE is a strong inhibitory agent against PPD-induced toxicity in human keratinocytes. The results indicated that RSE pretreatment significantly could suppress PPD induced cytotoxic effects, including decrease of cell viability, accumulation in subG1 phase of cells, and relocation of phosphatidylserine on keratinocytes. Also, we found that PPD caused cytotoxicity was associated with mitochondrial membrane potential loss and subsequent activation of caspase and PARP degradation. However, pretreatment of RSE showed preventive activities against PPD induced mitochondrial membrane potential loss and ROS production in keratinocytes. In conclusion, the results of present study suggest that RSE was able to protect the skin from several cytotoxic effects of PPD and could be a meaningful material in many industries using PPD.

10.
J Cosmet Dermatol ; 19(4): 977-984, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31389672

ABSTRACT

BACKGROUND: Protocatechuic acid has reported containing antioxidant effects. However, information on its other biological activities such as anti-wrinkle properties is limited AIMS: The objective of this study was to evaluate an antioxidant, collagen synthesis, MMP-1 inhibition (in vitro), and anti-wrinkle (in vivo) effects of protocatechuic acid (PCA) as a potent ingredient for wrinkle-care cosmetic. METHODS: Antioxidant effect was evaluated based on its scavenging activity for free radicals (DPPH, ABTS+). To evaluate the anti-skin aging potency of PCA, levels of MMP-1 and type I procollagen were measured using an ELISA kit in cultured human dermal fibroblasts. To further investigate if PCA could increase collagen synthesis, full-thickness human skin explants were immunostained with an anti-collagen I antibody. In an in vivo study, 22 female subjects were enrolled in a placebo-controlled trial. Facial wrinkle, especially crow's feet around eyes, was treated with lotion-containing 0.02% PCA for 8 weeks and compared with the placebo. RESULTS: In in vitro study, PCA showed high antioxidant activ ity. PCA also showed potential to induce the synthesis of type I collagen in human dermal fibroblast and skin explants. It inhibited MMP-1 secretion from UVA-irradiated human dermal fibroblast. An in vivo study, treatment with lotion-containing 0.02% PCA for 8 weeks significantly reduced the percentage of all skin wrinkle parameters. CONCLUSION: Based on the results of in vitro assays and in vivo skin testing in human subjects, PCA shows potential in anti-wrinkle or anti-skin aging treatments.


Subject(s)
Antioxidants/administration & dosage , Cosmeceuticals/administration & dosage , Hydroxybenzoates/administration & dosage , Skin Aging/drug effects , Skin Cream/administration & dosage , Adult , Cell Line , Cell Survival/drug effects , Collagen Type I/analysis , Collagen Type I/metabolism , Drug Evaluation, Preclinical , Face , Female , Fibroblasts , Humans , Matrix Metalloproteinase 1/analysis , Matrix Metalloproteinase 1/metabolism , Middle Aged , Skin/cytology , Skin/drug effects , Skin/metabolism , Skin/radiation effects , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects
11.
Article in English | MEDLINE | ID: mdl-31662774

ABSTRACT

Mentha suaveolens is an aromatic herb that has a wide range of biological activities, including antimicrobial, antifungal, anti-inflammatory, and hepatoprotective properties. Although there are a few reports on the antioxidant property of M. suaveolens, its cytoprotective activity against oxidative stress has not been reported yet. The objective of this study was to determine the protective activity of M. suaveolens aqueous extract (MSAE) against hydrogen peroxide- (H2O2-) induced oxidative stress and apoptosis in human keratinocyte HaCaT cells. MSAE pretreatment decreased H2O2-induced cytotoxicity and suppressed H2O2-induced intracellular ROS generation. Furthermore, MSAE suppressed expression levels of H2O2-induced apoptotic genes such as cleaved caspase-3, caspase-9, and cleaved poly (ADP-ribose) polymerase (PARP). Pretreatment with MSAE induced expression of phase II enzyme such as HO-1 through translocation of NF-E2-related factor (Nrf2) upon H2O2 exposure. These results revealed that the cytoprotective effect of MSAE against oxidative stress-induced cell death was associated with activation of Nrf2-mediated phase II enzyme expression.

12.
BMC Complement Altern Med ; 19(1): 30, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30691451

ABSTRACT

BACKGROUND: Exposure of skin to urban air pollutants is closely related to skin aging and inflammatory responses such as wrinkles formation, pigmentation spot, atopic dermatitis, and acne. Thus, a great deal of interest has been focused on the development of natural resources that can provide a protective effect to skin from pollutants. METHODS: The antioxidative activity of Camellia japonica flower extract (CJFE) was evaluated by 1,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay, and the inhibitory effect of CJFE by urban air pollutants-induced reactive oxygen species (ROS) production was determined in cultured normal human dermal fibroblasts (NHDFs). We additionally investigated the protective effects of CJFE against urban air pollutant using in vitro and ex vivo model. RESULTS: CJFE with high phenolic concentration showed antioxidative activity on scavenging capacity of 1,2-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation in a concentration dependent manner. CJFE inhibited urban air pollutants-induced ROS generation, matrixmetalloproteinase-1 (MMP-1) production and a xenobiotic response element (XRE)-luciferase activity indicating the aryl hydrocarbon receptor (AhR) transactivation. In addition, CJFE showed an excellent protective activity against pollutants-induced deteriorating effect in ex vivo model. CJFE reduced the level of pollutants-induced malondialdehyde (MDA), lipid peroxidation marker, inhibited MMP-1 expression and increased collagen synthesis. It also reduced the cell numbers with pyknotic nuclei (mainly occurring in apoptosis) and detachment of dermo-epidermal junction (DEJ) induced by pollutants. CONCLUSIONS: Apparently, it is proposed that CJFE can be used as a protective material against pollutant-induced skin damages.


Subject(s)
Air Pollutants/toxicity , Camellia/chemistry , Flowers/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Benzothiazoles/metabolism , Biphenyl Compounds/metabolism , Cells, Cultured , Fibroblasts/drug effects , Humans , Oxidation-Reduction/drug effects , Picrates/metabolism , Reactive Oxygen Species/metabolism , Sulfonic Acids/metabolism
13.
Biochem Biophys Res Commun ; 512(4): 647-652, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30685091

ABSTRACT

nc886, a long non-coding RNA (ncRNA) of 101 nucleotides in length, is known as a vault RNA or microRNA precursor. Despite the recent discovery that ncRNAs in the nucleus play a crucial role in regulating chromosomal transformation and transcription, only a few studies have focused on the function of ncRNAs in the cytoplasm, such as nc886. Several studies have investigated the function of nc886 as a suppressor of carcinogenesis and inflammation in different cancer cell types; however, its role in the skin has yet to be clearly elucidated. The two RNA binding sites for protein kinase RNA-activated (PKR) are located in the central region of the stable structure of nc886, which competes with other double-stranded RNA species. Successful binding results in decreased PKR activity. Among changes in skin cells induced by ultraviolet B (UVB) radiation, nc886 expression decreases, whereas PKR phosphorylation via mitogen-activated protein kinases (MAPKs) increases. Reduced nc886 expression leads to uncontrolled PKR activity and increases in the expression of inflammatory cytokines, matrix metalloproteinase-9 (MMP-9), type IV collagenase, and cyclooxygenase (COX-2), which ultimately accelerate inflammatory responses and skin aging. The present study investigated the regulatory mechanism associated with PKR activity and nc886-PKR binding in skin cell aging and inflammation. These results suggest a role for nc886 in controlling photoaging and inflammation in skin cells.


Subject(s)
Cyclooxygenase 2/genetics , Keratinocytes/radiation effects , Matrix Metalloproteinase 9/genetics , RNA, Long Noncoding/genetics , Ultraviolet Rays , Cell Line , Down-Regulation/radiation effects , Humans , Keratinocytes/metabolism , MicroRNAs/genetics , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects , Up-Regulation/radiation effects
14.
Molecules ; 23(4)2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29570674

ABSTRACT

Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.


Subject(s)
Keratinocytes/metabolism , Matrix Metalloproteinase 1/metabolism , Period Circadian Proteins/metabolism , Cell Line , Circadian Clocks/genetics , Circadian Clocks/physiology , Cyclic AMP/metabolism , DNA Repair/drug effects , DNA Repair/radiation effects , Humans , Keratinocytes/drug effects , Keratinocytes/radiation effects , Lespedeza/chemistry , Matrix Metalloproteinase 1/genetics , Period Circadian Proteins/genetics , Plant Extracts/chemistry , Plant Extracts/pharmacology , Ultraviolet Rays
15.
BMC Complement Altern Med ; 15: 449, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26702819

ABSTRACT

BACKGROUND: The purpose of the study was to determine the anti-melanogenic and anti-oxidant properties of Gaillardia aristata flower extract (GAE). METHODS: Melanogenesis inhibition by GAE was investigated in cultivated cells and in a human skin model. In cultivated cells, the melanogenesis regulatory effect of GAE was evaluated using melanin content, intracellular tyrosinase activity and anti-oxidant characteristics. In addition, the expression of melanogenesis-related proteins was determined by western blot assay and real-time PCR. RESULTS: GAE reduced the amount of melanin in B16F10 and normal human epidermal melanocyte cells and suppressed intracellular tyrosinase activity in a dose-dependent pattern. Also, GAE significantly decreased the expression of melanogenesis-related proteins (microphthalmia associated transcription factor, tyrosinase, tyrosinase-related protein-1, and dopachrome tautomerase). Real-time PCR results revealed a down-regulation of the mRNAs of these proteins. GAE possessed anti-oxidant characteristics as free radical-scavenging capacity and reducing power. In the three-dimensional human skin model, GAE applied to hyperpigmented skin significantly increased the degree of skin lightening within 2 weeks of treatment. The safety of GAE on human skin was confirmed. CONCLUSIONS: These results indicate the potential of GAE for use in suppressing skin pigmentation. We proposed GAE as a new candidate of anti-melanogenic and antioxidant agents that could be used for cosmetic skin care products.


Subject(s)
Asteraceae/chemistry , Flowers/chemistry , Melanins/metabolism , Melanocytes/drug effects , Plant Extracts/pharmacology , Animals , Cell Line , Humans , Melanocytes/enzymology , Melanocytes/metabolism , Mice , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Skin Pigmentation/drug effects
16.
Nutrients ; 7(11): 9337-52, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26569300

ABSTRACT

The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow's feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation.


Subject(s)
Fruit/chemistry , Glycation End Products, Advanced/metabolism , Magnoliopsida/chemistry , Plant Extracts/pharmacology , Skin Aging/drug effects , Adult , Antioxidants/pharmacology , Cell Line , Female , Fibrillin-1 , Fibrillins , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lysine/analogs & derivatives , Lysine/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Middle Aged , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Skin/drug effects
17.
Molecules ; 20(9): 17557-69, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26402665

ABSTRACT

Andrographis paniculata (A. paniculata, Chuanxinlian), a medicinal herb with an extremely bitter taste that is native to China and other parts of Southeast Asia, possesses immense therapeutic value; however, its therapeutic properties have rarely been applied in the field of skin care. In this study, we investigated the effect of an A. paniculata extract (APE) on human epidermal stem cells (EpSCs), and confirmed its anti-aging effect through in vitro, ex vivo, and in vivo study. An MTT assay was used to determine cell proliferation. A flow cytometric analysis, with propidium iodide, was used to evaluate the cell cycle. The expression of integrin ß1 (CD29), the stem cell marker, was detected with antibodies, using flow cytometry in vitro, and immunohistochemical assays in ex vivo. Type 1 collagen and VEGF (vascular endothelial growth factor) were measured using an enzyme-linked immunosorbent assay (ELISA). During the clinical study, skin hydration, elasticity, wrinkling, sagging, and dermal density were evaluated before treatment and at four and eight weeks after the treatment with the test product (containing the APE) on the face. The proliferation of the EpSCs, treated with the APE, increased significantly. In the cell cycle analysis, the APE increased the G2/M and S stages in a dose-dependent manner. The expression of integrin ß1, which is related to epidermal progenitor cell expansion, was up-regulated in the APE-treated EpSCs and skin explants. In addition, the production of VEGF in the EpSCs increased significantly in response to the APE treatment. Consistent with these results, the VEGF and APE-treated EpSCs conditioned medium enhanced the Type 1 collagen production in normal human fibroblasts (NHFs). In the clinical study, the APE improved skin hydration, dermal density, wrinkling, and sagging significantly. Our findings revealed that the APE promotes a proliferation of EpSCs, through the up-regulation of the integrin ß1 and VEGF expression. The VEGF might affect the collagen synthesis of NHF as a paracrine factor. Clinical studies further suggested that treatment with formulations containing APE confers anti-aging benefits. Based on these results, we suggest that APE may be introduced as a possible anti-aging agent.


Subject(s)
Andrographis/chemistry , Endothelial Progenitor Cells/drug effects , Plant Extracts/therapeutic use , Skin Aging/drug effects , Adult , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Elasticity/drug effects , Endothelial Progenitor Cells/physiology , Female , Gene Expression Regulation/drug effects , Humans , Integrin beta1/metabolism , Mice , Middle Aged , Plant Extracts/administration & dosage , Plant Extracts/chemistry
18.
Molecules ; 20(3): 3549-64, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25706757

ABSTRACT

Glycation is an ageing reaction of naturally occurring sugars with dermal proteins, with clinical signs appearing in vivo around age 30, and increasing steadily/regularly with age. The suppleness of the dermis is affected by the formation of bridges between proteins and sugars (Maillard's reaction). The accumulation of advanced glycation end products (AGEs) in skin plays a very important role in skin ageing. Therefore, natural compounds or extracts that possess antiglycation activities may have great anti-ageing potential. In the present study, Silybum marianum flower extract (SMFE) was demonstrated to possess antiglycation activity. We found that SMFE inhibits glycation reaction between BSA and glucose. In addition, antiglycation activity of SMFE was confirmed in a human skin explants model. SMFE reduced Nε-(carboxymethyl) lysine (CML) expression, whereas SMFE stimulated fibrillin-1 expression compared to treatment with methyglyoxal. An active ingredient contributing to the observed activities was identified as silibinin. The antiglycation activity of silibinin was dose-dependent. The beneficial effects of silibinin may be applied to prevention or management of AGE-mediated pathologies, targeting in a pleiotropic and complementary way the biochemical and cellular bases of skin aging.


Subject(s)
Antioxidants/pharmacology , Flowers/chemistry , Glycosylation/drug effects , Phenols/pharmacology , Plant Extracts/pharmacology , Silybum marianum/chemistry , Skin/drug effects , Adult , Chromatography, High Pressure Liquid , Female , Fibrillin-1 , Fibrillins , Flavonoids/pharmacology , Glycation End Products, Advanced/metabolism , Humans , In Vitro Techniques , Microfilament Proteins/metabolism , Middle Aged , Silybin , Silymarin/metabolism , Skin Irritancy Tests/methods
19.
Int J Mol Sci ; 15(10): 18919-40, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25334063

ABSTRACT

The phenolic compound phloretin is a prominent member of the chemical class of dihydrochalcones. Phloretin is specifically found in apple and apple juice and known for its biological properties. We were particularly interested in its potential dermo-cosmetic applications. However, practical limitations of phloretin do exist due to its poor water-solubility. Phloretin was sulfonated with sulfuric acid (98%, wt) and mixed with saturated salt water to produce phloretin 3',3-disulfonate in order to increase its water-solubility. Here we reported the photoprotective effect of phloretin 3',3-disulfonate (PS), a new semi-synthetic derivative of phloretin. Results showed that PS attenuated cyclobutane pyrimidine dimer (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by ultraviolet B (UVB). The photoprotective effect of PS is tightly correlated to the enhancement of nucleotide excision repair (NER) gene expression. Furthemore, PS had inhibitory effects on UVB-induced release of the inflammatory mediators, such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of PS on human skin. Overall, the results demonstrated significant benefits of PS on the protection of keratinocytes against UVB-induced injuries and suggested its potential use in skin photoprotection.


Subject(s)
Keratinocytes/drug effects , Keratinocytes/radiation effects , Phloretin/analogs & derivatives , Phloretin/pharmacology , Sunscreening Agents/chemistry , Sunscreening Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line , DNA Repair/drug effects , Gene Expression Regulation/drug effects , Glutathione/metabolism , Humans , Keratinocytes/metabolism , Skin Irritancy Tests , Ultraviolet Rays
20.
Molecules ; 18(12): 15724-36, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24352025

ABSTRACT

Madecassoside (MA), a pentacyclic triterpene isolated from Centella asitica (L.), is used as a therapeutic agent in wound healing and also as an anti-inflammatory and anti-aging agent. However, the involvement of MA in skin-pigmentation has not been reported. This study was conducted to investigate the effects of MA on ultraviolet (UV)-induced melanogenesis and mechanisms in a co-culture system of keratinocytes and melanocytes. MA significantly inhibited UVR-induced melanin synthesis and melanosome transfer in the co-culture system. These effects were further demonstrated by the MA-induced inhibition of protease-activated receptor-2 expression and its signaling pathway, cyclooxygenase-2, prostaglandin E2 and prostaglandin F2 alpha in keratinocytes. The clinical efficacy of MA was confirmed on artificially tanned human skin. MA significantly reduced UV-induced melanin index at 8 weeks after topical application. Overall, the study demonstrated significant benefits of MA use in the inhibition of hyperpigmentation caused by UV irradiation.


Subject(s)
Biosynthetic Pathways/drug effects , Inflammation/etiology , Inflammation/prevention & control , Melanins/biosynthesis , Triterpenes/pharmacology , Ultraviolet Rays/adverse effects , Coculture Techniques , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprost/biosynthesis , Dinoprostone/biosynthesis , Epidermis/drug effects , Epidermis/metabolism , Gene Expression Regulation/drug effects , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Phagocytosis/drug effects , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...