Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pigment Cell Melanoma Res ; 27(2): 263-74, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24330389

ABSTRACT

Gain of function of the neuronal receptor, metabotropic glutamate receptor 1 (Grm1), was sufficient to induce melanocytic transformation in vitro and spontaneous melanoma development in vivo when ectopically expressed in melanocytes. The human form of this receptor, GRM1, has been shown to be ectopically expressed in a subset of human melanomas but not benign nevi or normal melanocytes, suggesting that misregulation of GRM1 is involved in the pathogenesis of certain human melanomas. Sustained stimulation of Grm1 by the ligand, glutamate, is required for the maintenance of transformed phenotypes in vitro and tumorigenicity in vivo. In this study, we investigate the mechanism of an inhibitor of glutamate release, riluzole, on human melanoma cells that express metabotropic glutamate receptor 1 (GRM1). Various in vitro assays conducted show that inhibition of glutamate release in several human melanoma cell lines resulted in an increase of oxidative stress and DNA damage response markers.


Subject(s)
DNA Damage , Melanoma/metabolism , Melanoma/pathology , Receptors, Metabotropic Glutamate/metabolism , Riluzole/pharmacology , Signal Transduction/drug effects , Acetylcysteine/pharmacology , Apoptosis/drug effects , Biopsy , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , Gene Knockdown Techniques , Glutamic Acid/metabolism , Glutathione/metabolism , Histones/metabolism , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Melanoma/drug therapy , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Riluzole/therapeutic use
2.
PLoS One ; 7(7): e41845, 2012.
Article in English | MEDLINE | ID: mdl-22844530

ABSTRACT

Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.


Subject(s)
Cell Movement/drug effects , Cell Transformation, Neoplastic , Membrane Glycoproteins/metabolism , N-Acetylneuraminic Acid/metabolism , Plant Lectins/pharmacology , Amino Acid Sequence , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Humans , Maackia/chemistry , Melanoma/blood supply , Melanoma/diet therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Molecular Sequence Data , Necrosis/chemically induced , Neovascularization, Pathologic/diet therapy , Plant Lectins/chemistry , Plant Lectins/metabolism , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...