Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(12): e113685, 2014.
Article in English | MEDLINE | ID: mdl-25517977

ABSTRACT

Competition is ubiquitous in many complex biological, social, and technological systems, playing an integral role in the evolutionary dynamics of the systems. It is often useful to determine the dominance hierarchy or the rankings of the components of the system that compete for survival and success based on the outcomes of the competitions between them. Here we propose a ranking method based on the random walk on the network representing the competitors as nodes and competitions as directed edges with asymmetric weights. We use the edge weights and node degrees to define the gradient on each edge that guides the random walker towards the weaker (or the stronger) node, which enables us to interpret the steady-state occupancy as the measure of the node's weakness (or strength) that is free of unwarranted degree-induced bias. We apply our method to two real-world competition networks and explore the issues of ranking stabilization and prediction accuracy, finding that our method outperforms other methods including the baseline win-loss differential method in sparse networks.


Subject(s)
Computer Simulation , Algorithms , Biological Evolution , Stochastic Processes
2.
Article in English | MEDLINE | ID: mdl-22486672

ABSTRACT

Air streams commonly emitted from industrial sources generally contain various mixtures of volatile organic compounds (VOCs), and these complex mixtures can present challenges with respect to bioreactor design and applications. In this study, therefore, a modified Monod-type model using interaction parameters was employed to describe the biodegradation kinetics of mixtures of aromatic compounds by a Pseudomonas isolate. In addition, the model and estimated parameters were utilized to predict the performance of a bubble-column bioreactor for the treatment of mixtures of benzene, toluene, p-xylene, and styrene (BTXS). Benzene, toluene and styrene, as individual substrates, were actively degraded by the bacterial culture, whereas p-xylene was not degraded as a single substrate. Relative to the single substrate experiments, the degradation of benzene and toluene was inhibited by the other compounds, while the degradation of styrene was significantly stimulated in the presence of the other BTXS compounds. The cometabolic degradation of p-xylene was observed in the presence of benzene and toluene. The estimated interaction parameters indicated that the degradation of benzene was substantially inhibited in the presence of styrene, whereas the degradation of styrene was strongly stimulated by toluene. The kinetic coefficients and interaction parameters were used to successfully predict the biodegradation kinetics and performance of a bioreactor subjected to the quaternary mixture. Overall, the model was able to provide reasonable predictions when substrate interactions, including inhibition, stimulation, and cometabolism, play significant roles in biodegradation processes.


Subject(s)
Air Pollutants/metabolism , Benzene Derivatives/metabolism , Benzene/metabolism , Bioreactors , Filtration , Pseudomonas/metabolism , Biodegradation, Environmental , Computer Simulation , Kinetics , Models, Biological
3.
J Hazard Mater ; 194: 385-92, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-21872983

ABSTRACT

A combined reaction, consisting of granular activated carbon (GAC) adsorption and catalytic oxidation, has been proposed to improve the removal efficiencies of formaldehyde, one of the major indoor air pollutants. In this study, silver nano-particles attached onto the surface of GAC (Ag-GAC) using the sputtering method were evaluated for the simultaneous catalytic oxidation and adsorption of formaldehyde. The evolution of CO(2) from the silver nano-particles indicated that formaldehyde was catalytically oxidized to its final product, with the oxidation kinetics expressed as pseudo-first order. In addition, a packed column test showed that the mass of formaldehyde removed by the Ag-GAC was 2.4 times higher than that by the virgin GAC at a gas retention time of 0.5s. However, a BET analysis showed that the available surface area and micro-pore volume of the Ag-GAC were substantially decreased due to the deposition of the silver nano-particles. To simulate the performance of the Ag-GAC, the homogeneous surface diffusion model (HSDM), developed for the prediction of the GAC column adsorption, was modified to incorporate the catalytic oxidation taking place on the Ag-GAC surface. The modified HSDM demonstrated that numerical simulations were consistent with the experimental data collected from the Ag-GAC column tests. The model predictions implied that the silver nano-particles deposited on the GAC reduced the adsorptive capacity due to decreasing the available surface for the diffusion of formaldehyde into the GAC, but the overall mass of formaldehyde removed by the Ag-GAC was increased due to catalytic oxidation as a function of the ratio of the surface coverage by the nano-particles.


Subject(s)
Carbon/chemistry , Formaldehyde/isolation & purification , Metal Nanoparticles , Models, Theoretical , Silver/chemistry , Adsorption , Diffusion , Kinetics , Microscopy, Electron, Scanning , Thermodynamics
5.
J Hazard Mater ; 176(1-3): 849-55, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20031312

ABSTRACT

The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in a bubble-column bioreactor, and the toluene removal efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The toluene removal efficiency was enhanced when granular activated carbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m(3)/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m(3)/h at a toluene loading of 291 g/m(3)/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high toluene removal capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene.


Subject(s)
Biodegradation, Environmental , Candida tropicalis/metabolism , Toluene/metabolism , Biomass , Bioreactors/microbiology , Charcoal/chemistry , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...