Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(18): 13572-13582, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32876437

ABSTRACT

A series of quaternary and quinary Zintl phase thermoelectric (TE) compounds, Ca5-xYbxAl2-yInySb6 (3.07(1) ≤ x ≤ 4.88(2); 0.16(2) ≤ y ≤ 2.00), containing Al/In mixed sites as well as Ca/Yb mixed sites has been successfully synthesized by a direct arc-melting method, and the X-ray diffraction analyses indicated that the products initially adopted an orthorhombic Ba5Al2Bi6-type structure (space group Pbam, Z = 2). However, after a postannealing process at 973 K for 1 month, the particular Yb rich compounds underwent a transformation of the original structure type to a Ca5Ga2Sb6-type phase regardless of the In substitution for Al. The noticeable site preference of cationic Ca and Yb in the three available cationic sites could be understood on the basis of a size match between the central cation and the volume of the anionic polyhedra. The observed phase transition was nicely explained by DFT calculations, proving that the Ca5Ga2Sb6-type phase was energetically more favorable than the Ba5Al2Sb6-type phase for the particular Yb-rich compound. Moreover, this energy difference between the two title phases was originally the result of both the site energy in the Ca site and the bond energies in the [(Al/In)2Sb8] anionic building blocks. A series of thermoelectric property data indicated that a two-step process involving a partial/full In substitution for Al and a phase transition from the Ba5Al2Sb6-type to the Ca5Ga2Sb6-type phase successfully enhanced the electrical conductivities and the Seebeck coefficients of the title compounds. This kind of combined effect eventually resulted in a ZT improvement for the quinary compound Ca1.14(2)Yb3.86Al1.68(1)In0.32Sb6 by approximately 4 times in comparison to its quaternary predecessor Ca1.55(1)Yb3.45Al2Sb6.

2.
Inorg Chem ; 58(9): 5827-5836, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30985118

ABSTRACT

Three Zintl phase compounds belonging to the CaYb4Al2Sb6- xGe x ( x = 0.2, 0.5, 0.7; nominal compositions) system with various Ge-doping contents were successfully synthesized by arc-melting and were initially crystallized in the Ba5Al2Bi6-type phase (space group Pbam, Pearson codes oP26). However, after post-heat treatment at an elevated temperature, the originally obtained crystal structure was transformed into the homeotypic Ca5Ga2Sb6-type structure according to powder and single-crystal X-ray diffraction analyses. Two types of crystal structures share some isotypic structural moieties, such as the one-dimensional anionic chains formed by ∞1[Al2Sb8] and the void-filling Ca2+/Yb2+ mixed cations, but the slightly different spatial arrangements in each unit cell make these two structural types distinguishable. This series of title compounds is originally investigated to examine whether anionic p-type doping using Ge can successfully enhance thermoelectric (TE) properties of the Yb-rich CaYb4Al2Sb6- xGe x series even after the phase transition from the Ba5Al2Bi6-type to the Ca5Ga2Sb6-type phase. More interestingly, we also reveal that the given structural transformation is triggered by the particularly different site-preference of Ca2+ and Yb2+ among three available cationic sites in each structure type, which is significantly affected by thermodynamic conditions of this system. Band structure and density of states analyses calculated by density functional theory using the tight-binding linear muffin-tin orbital method also prove that the Ge-doping actually increases band degeneracies and the number of resonant peaks near the Fermi level resulting in the improvement of Seebeck coefficients. Electron localization function analyses for the (0 1 0) sliced-plane and the 3D isosurface nicely illustrates the distortion of the paired-electron densities due to the introduction of Ge. The systematic TE property measurements imply that the attempted anionic p-type doping is indeed effective to improve the TE characteristics of the title CaYb4Al2Sb6- yGe y system.

SELECTION OF CITATIONS
SEARCH DETAIL
...