Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Physiol ; 13: 913673, 2022.
Article in English | MEDLINE | ID: mdl-35874532

ABSTRACT

Arterial aging results in a progressive reduction in elasticity of the vessel wall and an impaired ability of aged blood vessels to control local blood flow and pressure. Recently, a new concept has emerged that the stiffness and decreased contractility of vascular smooth muscle (VSM) cells are important contributors to age-induced arterial dysfunction. This study investigated the hypothesis that aging alters integrin function in a matrix stiffness-dependent manner, which contributes to decreased VSM contractility in aged soleus muscle feed arteries (SFA). The effect of RGD-binding integrins on contractile function of cannulated SFA isolated from young (4 months) and old (24 months) Fischer 344 rats was assessed by measuring constrictor responses to norepinephrine, phenylephrine, and angiotensin II. Results indicated that constrictor responses in presence of RGD were impaired in old compared to young SFA. VSM cells isolated from young and old SFA were used for functional experiments using atomic force microscopy and high-resolution imaging. Aging was associated with a modulation of integrin ß1 recruitment at cell-matrix adhesions that was matrix and substrate stiffness dependent. Our data showed that substrate stiffening drives altered integrin ß1 expression in aging, while soft substrates abolish age-induced differences in overall integrin ß1 expression. In addition, substrate stiffness and matrix composition contribute to the modulation of SMα-actin cytoskeleton architecture with soft substrates reducing age effects. Our results provide new insights into age-induced structural changes at VSM cell level that translates to decreased functionality of aged resistance soleus feed arteries.

2.
Physiol Rep ; 8(1): e14341, 2020 01.
Article in English | MEDLINE | ID: mdl-31960593

ABSTRACT

Aging is associated with impaired vascular function characterized in part by attenuated vasorelaxation to acetylcholine (ACh) and sodium nitroprusside (SNP). Due to structural and functional differences between conduit and resistance arteries, the effect of aging on vasorelaxation responses may vary along the arterial tree. Our purpose was to determine age-related differences in vasorelaxation responses in large and small arteries. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were assessed in abdominal aorta (AA), iliac arteries (IA), femoral arteries (FA), and gastrocnemius feed arteries (GFA) from young and old male rats. ACh-mediated vasorelaxation was significantly impaired in old AA and IA. SNP-mediated vasorelaxation was impaired in old AA. To investigate a potential mechanism for impaired relaxation responses in AA and IA, we assessed eNOS protein content and interactions with caveolin-1 (Cav-1), and calmodulin (CaM) via immunoprecipitation and immunoblot analysis. We found no age differences in eNOS content or interactions with Cav1 and CaM. Combined data from all rats revealed that eNOS content was higher in IA compared to AA and FA (p < .001), and was higher in GFA than AA (p < .05). Cav1:eNOS interaction was greater in FA than in AA and IA (p < .01), and in GFA compared to IA (p < .05). No differences in CaM:eNOS were detected. In conclusion, age-related impairment of vasorelaxation responses occurred in the large conduit, but not small conduit or resistance arteries. These detrimental effects of age were not associated with changes in eNOS or its interactions with Cav-1 or CaM.


Subject(s)
Aging/physiology , Aorta, Abdominal/physiopathology , Femoral Artery/physiopathology , Iliac Artery/physiopathology , Vasodilation/physiology , Vasodilator Agents/pharmacology , Acetylcholine/pharmacology , Aging/metabolism , Animals , Aorta, Abdominal/drug effects , Aorta, Abdominal/metabolism , Arteries/drug effects , Arteries/metabolism , Arteries/physiopathology , Calmodulin/metabolism , Caveolin 1/metabolism , Femoral Artery/drug effects , Femoral Artery/metabolism , Iliac Artery/drug effects , Iliac Artery/metabolism , Male , Muscle, Skeletal/blood supply , Nitric Oxide Synthase Type III/metabolism , Nitroprusside/pharmacology , Rats , Vasodilation/drug effects
3.
Am J Physiol Heart Circ Physiol ; 315(3): H602-H609, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29906226

ABSTRACT

Current research indicates that vasomotor responses are altered with aging in skeletal muscle resistance arteries. The changes in vasomotor function are characterized by impaired vasodilator and vasoconstrictor responses. The detrimental effects of aging on vasomotor function are attenuated in some vascular beds after a program of endurance exercise training. The signals associated with exercise responsible for inducing improvements in vasomotor function have been proposed to involve short-duration increases in intraluminal shear stress and/or pressure during individual bouts of exercise. Here, we review evidence that increases in shear stress and pressure, within a range believed to present in these arteries during exercise, promote healthy vasomotor function in aged resistance arteries. We conclude that available research is consistent with the interpretation that short-duration mechanical stimulation, through increases in shear stress and pressure, contributes to the beneficial effects of exercise on vasomotor function in aged skeletal muscle resistance arteries.


Subject(s)
Arteries/physiology , Exercise , Muscle, Skeletal/blood supply , Vasomotor System/physiology , Animals , Arteries/growth & development , Humans , Mechanotransduction, Cellular , Muscle, Skeletal/growth & development , Stress, Mechanical , Vasomotor System/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...