Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834369

ABSTRACT

Healthcare-acquired infections and multi-drug resistance in pathogens pose a major crisis for the healthcare industry. Novel antibiotics which are effective against resistant strains and unlikely to elicit strong resistance are sought after in these settings. We have previously developed synthetic mimics of ubiquitous antimicrobial peptides and have worked to apply a lead compound, CSA-131, to the crisis. We aimed to generate a system of CSA-131-containing coatings for medical devices that can be adjusted to match elution and compound load for various environments and establish their efficacy in preventing the growth of common pathogens in and around these devices. Peripherally inserted central catheter (PICC) lines were selected for our substrate in this work, and a polyurethane-based system was used to establish coatings for evaluation. Microbial challenges by methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Candida albicans were performed and SEM was used to evaluate coating structure and colonization. The results indicate that selected coatings show activity against selected planktonic pathogens that extend between 16 and 33 days, with similar periods of biofilm prevention.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Catheters , Biofilms
2.
Cancer Rep (Hoboken) ; 6(4): e1790, 2023 04.
Article in English | MEDLINE | ID: mdl-36772872

ABSTRACT

BACKGROUND: Prostate cancer (PC) is estimated to cause 13.1% of all new cancer cases in the United States in 2021. Natural bioactive compounds have drawn the interest of researchers worldwide in their efforts to find novel treatments for PC. Many of these bioactive compounds have been identified from traditional Chinese medicine (TCM) remedies often containing multiple bioactive compounds. However, in vitro studies frequently focus on the compounds in isolation. AIM: We used mixture design response surface methodology (MDRSM) to assess changes in PC cell viability after 48 h of treatment to identify the optimal mixture of all 35 three-compound combinations of seven bioactive compounds from TCM. METHODS AND RESULTS: We used berberine, wogonin, shikonin, curcumin, triptolide, emodin, and silybin to treat PC3 and LNCaP human PC cells at their IC50 concentrations that we calculated. These compounds modulate many chemotherapeutic pathways including intrinsic and extrinsic apoptosis, increasing reactive oxygen species, decreasing metastatic pathways, inhibiting cell cycle progression. We hypothesize that because these compounds bind to unique molecular targets to activate different chemotherapeutic pathways, they will act synergistically to decrease tumor cell viability. Results from MDRSM showed that two-way combinations were more effective than three-way or single compounds. Most notably wogonin, silybin, emodin and berberine responded well in two-compound combinations with each other in PC3 and LNCaP cells. We then conducted cell viability tests combining two bioactive compound ratios with docetaxel (Doc) and found significant results within the LNCaP cell line. In particular, mixtures of berberine and wogonin, berberine and silybin, emodin and berberine, and emodin and silybin reduced LNCaP cell viability up to an average of 90.02%. The two-compound combinations were significantly better than docetaxel treatment of LNCaP cells. CONCLUSION: Within the PC3 cells, we show that a combination of berberine, wogonin and docetaxel is just as effective as docetaxel alone. Thus, we provide new combination treatments that are highly effective in vitro for treating androgen-dependent and androgen-independent PC.


Subject(s)
Berberine , Emodin , Prostatic Neoplasms , Male , Humans , Docetaxel/pharmacology , Androgens/therapeutic use , Emodin/therapeutic use , Silybin/therapeutic use , Berberine/pharmacology , Berberine/therapeutic use , Cell Line, Tumor , Prostatic Neoplasms/metabolism , Phytochemicals/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...