Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Light Sci Appl ; 11(1): 294, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36216825

ABSTRACT

Micro or submicron scale light-emitting diodes (µLEDs) have been extensively studied recently as the next-generation display technology. It is desired that µLEDs exhibit high stability and efficiency, submicron pixel size, and potential monolithic integration with Si-based complementary metal-oxide-semiconductor (CMOS) electronics. Achieving such µLEDs, however, has remained a daunting challenge. The polar nature of III-nitrides causes severe wavelength/color instability with varying carrier concentrations in the active region. The etching-induced surface damages and poor material quality of high indium composition InGaN quantum wells (QWs) severely deteriorate the performance of µLEDs, particularly those emitting in the green/red wavelength. Here we report, for the first time, µLEDs grown directly on Si with submicron lateral dimensions. The µLEDs feature ultra-stable, bright green emission with negligible quantum-confined Stark effect (QCSE). Detailed elemental mapping and numerical calculations show that the QCSE is screened by introducing polarization doping in the active region, which consists of InGaN/AlGaN QWs surrounded by an AlGaN/GaN shell with a negative Al composition gradient along the c-axis. In comparison with conventional GaN barriers, AlGaN barriers are shown to effectively compensate for the tensile strain within the active region, which significantly reduces the strain distribution and results in enhanced indium incorporation without compromising the material quality. This study provides new insights and a viable path for the design, fabrication, and integration of high-performance µLEDs on Si for a broad range of applications in on-chip optical communication and emerging augmented reality/mixed reality devices, and so on.

2.
Opt Express ; 27(26): 38413-38420, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878609

ABSTRACT

We report on the demonstration of top emitting AlGaN tunnel junction deep ultraviolet (UV) light emitting didoes (LEDs) operating at ∼267 nm. We show, both theoretically and experimentally, that the light extraction efficiency can be enhanced by nearly a factor of two with the incorporation of AlGaN nanowire photonic crystal structures. A peak wall-plug efficiency (WPE) ∼3.5% and external quantum efficiency (EQE) ∼5.4% were measured for AlGaN LEDs directly on-wafer without any packaging. This work demonstrates a viable path for achieving high efficiency deep UV LEDs through the integration of AlGaN planar and nanoscale structures.

3.
Opt Lett ; 44(23): 5679-5682, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31774752

ABSTRACT

Aluminum-nitride-on-sapphire has recently emerged as a novel low-loss photonics platform for a variety of on-chip electro-optics as well as linear and nonlinear optics applications. In this Letter, we demonstrate ultrahigh quality factor (Qint) microring resonators using single-crystal aluminum nitride grown on a sapphire substrate with an optimized design and fabrication process. A record high intrinsic Qint up to 2.8×106 at the wavelength of 1550 nm is achieved with a fully etched structure, indicating a low propagation loss less than 0.13 dB/cm. Such high Qint aluminum-nitride-on-sapphire resonators with their wide bandgap and electro-optical and nonlinear optical properties is promising for a wide range of low-power and high-power compact on-chip applications over a broad spectral range.

SELECTION OF CITATIONS
SEARCH DETAIL